

 30

Chapter 2 – Virtual Infrastructure Archi-
tecture
VMware is using a different marketing approach this time around with the new-
est release of their enterprise virtualization platform. With the previous version,
each component of the virtual infrastructure was labeled and sold as a separate
SKU. This caused quite a bit of confusion to end users trying to build a large-
scale infrastructure with exactly what licensing components needed to be pur-
chased to enable all of the features that were required.

To combat this, VMware took a new approach of combining the most used
components into a single bundle called VI3, or “VMware Infrastructure 3”. We
have run into a great number of people that still insist this stands for “Virtual
Infrastructure 3”, which is definitely not the case1. VI3 comes in three different
flavors, each of which contains a different level of functionality through enabled
components and features. To start things off we want to discuss the available
components and features that make up the VI3 suite. Much of this information
will not be new to many readers of this book, but you never know, you may
learn something.

There is actually a good chance that you will not read the term VI3 outside of
the title of this book and this chapter. VI3 has many components that while
they do interact with each other they, for the most part, are configured and
managed as standalone components that fall well outside the generic umbrella
of VI3.

ESX Server

ESX Server 3.0 is the single piece that is absolutely required to run a virtual in-
frastructure in an environment. The ESX Server component is the virtualiza-

1 Even though it would have made a lot more sense since we feel it is quite foolish to include your
company name in an acronym that makes up a product name.

 31

tion software that enables you to actually run virtual machines. It is also the
single most complex piece of the VI3 virtualization platform, and as such, will
receive a majority of the attention throughout this entire book. We will go into
more detail than most individuals will ever need to know about ESX Server
throughout the rest of this chapter.

Virtual SMP

Virtual SMP is an add-on module for VI3 that provides the capability to config-
ure multi-processor virtual machines. It is important to point out that you do
not need Virtual SMP to use ESX Server itself on a multi-processor host; you
only need it to create VMs that use multiple physical host processors. VMware
has bumped up the number of processors that can be assigned to a single guest
operating system from two to four in VI3. Virtual SMP will be discussed in
more detail later in this chapter when we discuss the core 4 resources in depth.

VirtualCenter
VirtualCenter is an integral part of any virtual infrastructure that consists of
more than a handful of ESX Servers. The server component of VirtualCenter is
not included in the VI3 pricing structure, but VirtualCenter Agents, which are
required to communicate with the management server, are. The VirtualCenter
Management Server runs on a standalone Windows host and contains a data-
base backend to store configuration and performance data. The VirtualCenter
Agents are included with ESX 3 that provide the required communication
channel between the ESX hosts and the VirtualCenter Management Server.

As previously mentioned, every VirtualCenter Management Server will require
its own license that is independent of the standard VI3 licensing. The good
news is that in a vast majority of the VI3 implementations a single management
server is more than enough to manage and monitor the entire environment.
Many of the advanced features provided by VI3 actually require the use of Vir-
tualCenter. When we discuss the features that VI3 provides we will make sure
we indicate which ones do have such a requirement.

The VirtualCenter component is such an important part to a VI3 implementa-
tion we will have several chapters in this book that are dedicated to functionality

 32

features that are only available if VirtualCenter exists. In addition, a majority of
the Administration Book is focused on configuration and management of the
entire infrastructure using VirtualCenter components. Chapter 4 is the first
chapter that is dedicated to the configuration and use of VirtualCenter.

A High Level Look at the VI3 Features
If you are reading this book there is probably an extremely good chance that
you are either using VI3 or you have made a fairly solid decision that VMware
will be your platform of choice for your virtual infrastructure. Knowing that,
we want to simply highlight the advanced VI3 features that you are probably
well aware of in this chapter. Throughout the rest of the book we will discuss
the best way to use each of these technologies for a variety of situations. If you
notice terms that are unfamiliar to you, please remember this is just a quick
primer. Everything will be fully explained in their respective chapters where we
discuss them in detail.

VMware VMotion

To this day VMotion remains one of the greatest technologies in virtualization
and is probably one of the biggest drivers towards server virtualization. VMo-
tion provides the capability for virtual machines running on a shared storage
architecture to have their hardware resources shifted from one host server to
another in real time with no impact to the guest operating system. This single
technology provides unparalleled levels of availability and allows for hardware
and virtualization software management of an entire virtual infrastructure with-
out having to shut down a single virtual machine. Figure 1 shows a simplistic
view of how VMotion functions in a typical VI3 environment.

 33

Figure 2- 1: VMotion

Figure 1 is deserving of a brief explanation as to what is going on. To start, a
virtual machine is running on ESX Host A. The configuration files and data for
this virtual machine are stored centrally on a shared storage infrastructure
through one of several mechanisms that will be discussed in Chapter 5. Because
both ESX Host A and B can see this same storage, the virtual machine can
technically run on either system. The magic of VMotion comes when ESX
Host A can move the processor, memory and network workloads to ESX Host
B without interruption to the migrated workloads and while remaining invisible
to the guest operating system. It is important to note that VirtualCenter is a
requirement in order to leverage VMotion for your virtual machines.

A VMotion migration is actually performed with only a few seemingly simple
steps. These steps are made possible solely due to the fact that the VMkernel
(which we will learn about a little later in this chapter) provides an abstraction
layer between the virtual machine and actual physical hardware. Even though
the physical hardware platform is changing, the VMkernel makes sure the virtual
machine doesn’t notice anything is changing physically.

The memory state of the virtual machine is “snapshotted” on the source host.
This allows the source host to first send the memory state of the virtual ma-
chine to the destination host.

After the initial memory transfer is complete the virtual machine configuration
settings are sent from the source host to the destination.

 34

The virtual machine settings are checked for availability at the destination.
Enough CPU and Memory resources must be available. In addition, the desti-
nation host must be able to see the VMDK file(s) used for virtual machine data
and must also have the same virtual switches configured to ensure network
connectivity is maintained after the migration. If any of these checks fail, the
VMotion process exits and returns to normal operation on the source host.

The final memory state is transferred from the source host to the destination
host. This makes sure that any changes that occurred while the initial memory
state was copied and configuration settings were verified are updated at the des-
tination host.

Control of the virtual machine is taken by the destination host. This includes
transferring the SCSI reservation for the VMDK file(s) and sending an arp re-
quest from the virtual machines NIC’s to dictate the MAC address has switched
network ports. This dictates the end of the process and the VMotion migration
is complete.

There are several key uses for VMotion in an infrastructure that opens possibili-
ties that aren’t available in a physical infrastructure. One of the most obvious
uses is for ESX host maintenance. Although most physical systems, especially
the ones used for VMware ESX infrastructures, are built with many redundant
components. A failure of any one of these components is not a major issue, but
at the same time, should not be ignored. By using VMotion, the virtual ma-
chines running on the host requiring maintenance can be moved to alternate
hosts in the infrastructure. This capability is not limited to hardware mainte-
nance. VMware has been known to release occasional patches that require a
reboot of the ESX host to take effect. Before beginning the patch process for a
host the running virtual machines can be easily migrated to alternate locations
using VMotion.

Another function that commonly leverages VMotion technology is balancing
resource utilization across ESX hosts. As a virtual infrastructure grows both in
the number of virtual machines hosted and in resource utilization within exist-
ing virtual machines overall utilization across multiple hosts in an infrastructure
become unbalanced. It is not an uncommon practice to go through and reana-
lyze resource utilization on a monthly basis and make adjustments by shifting
virtual machines across the infrastructure. VMotion can be leveraged to remove
any downtime that would normally be associated with this activity.

 35

There are several challenges with manually using VMotion for the mentioned
tasks. In the event that an ESX host requires maintenance you need to know
where you can safely VMotion your virtual machines to. Without proper plan-
ning it is quite possible that a host can be overloaded, which would have a nega-
tive performance impact on the virtual machines running on that host. This
leads into another major challenge that also exists in the workload balancing
scenario which is the fact that the VMotion process is very manual. The
amount of change in some environments also requires that resources be closely
watched on an ongoing basis. Failure to do so can lead to negative virtual ma-
chine performance. VI3 can simplify these uses of VMotion through a technol-
ogy called Distributed Resource Scheduling, or simply DRS.

VMware DRS

VMware DRS technology takes VMotion to the next level. By leveraging Virtu-
alCenter, DRS has the capability to make recommendations or, depending on
the setting, automatically VMotion your virtual machines to balance the work-
load evenly across multiple ESX Hosts. By organizing groups of virtual ma-
chines into Resource Pools, you can ensure that these specific groups of servers
have access to the resources they need when they need them, regardless of
which host is providing these resources. The configuration possibilities of DRS
are quite advanced and will be discussed in full detail in Chapter 8. Many peo-
ple fear letting VMware make these decisions and there are some minor flaws
with some of the logic behind the process, but overall this innovative technol-
ogy is yet another thing that sets VMware apart from the rest of the virtualiza-
tion world.

 36

Figure 2- 2: DRS

Figure 2-2 shows a high level example of what DRS is capable of. The top row
shows a group of 12 virtual machines, all using the same amount of resources.
Knowing this almost never happens in the real world; the bottom row of hosts
shows how specific virtual machines leveraging more resources (VM4 and
VM9) are combined with servers using fewer resources (VM2 and VM8). While
this is a simplistic view, we can start to immediately the benefits of what DRS
can provide on a large scale.

In order to use VMotion and DRS both a source and target ESX server must be
online and available, as the migration process is performed without guest im-
pact. In order to provide resource availability to virtual machines in the event
of a host failure, VMware has provided VMware HA.

 37

VMware HA

VMware HA, or High Availability, provides automatic protection of virtual ma-
chines in the event that a host failure occurs. The recovery time in the event of
host failure depends on the amount of time it takes the effected virtual ma-
chines to reboot on alternate ESX hosts. Many advanced application architec-
tures have internal dependencies that dictate one system must be running before
others can function. HA meets this requirement by allowing users to specify
priority to each virtual machine configured in a host cluster. In the event of a
host failure VMware HA will do its best to power everything back on properly
without requiring end user interaction.

There are two key requirements to enable VMware HA in an infrastructure.
First, VirtualCenter must be managing all hosts involved in the high availability
cluster. The only way to have this level of control over a virtual infrastructure is
through the use of this centralized management console. The most important
requirement for VMware HA is leveraging a centralized shared storage infra-
structure. Much like VMotion, every host needs to have access to the virtual
machine configuration and data files to properly boot it in the event of a hard-
ware failure. Figure 2-3 will give you a rough idea of how VMware HA func-
tions within an environment.

Figure 2- 3: VMware HA

It is extremely important to note that using VMware HA will not allow your
infrastructure to run uninterrupted. If a host failure occurs, each virtual ma-

 38

chine running on that host will need to be booted on an alternate ESX Server.
A small amount of downtime will be noticed for each virtual machine while it
reboots. This can cause issues with application architectures that are dependent
on the component that is rebooting. As an example, if a Database virtual ma-
chine has to reboot due to a host failure additional systems may need to be re-
booted as a result, even though they are running on a host that hasn’t
experienced any issues. VMware HA does not address this issue so external
processes will need to exist to resolve potential issues.

In addition, additional resource capacity to run the virtual machines must be
available within the infrastructure. We will discuss properly building an N+1
virtual infrastructure in Chapter 3. If VMware HA is being used in conjunction
with VMware DRS, VirtualCenter will actually have the capability to look at
each existing host in the host cluster to determine the best place to recover each
virtual machine based on current resource utilization. Using VMware HA on a
centralized storage infrastructure can help protect against a local hardware fail-
ure, but what happens when there is data loss on the storage infrastructure, or
worse yet, the entire storage infrastructure becomes unavailable. It is critical to
have a solid backup recovery/disaster recovery plan and the next component of
VI3 addresses just that.

VMware Consolidated Backup

The final add-on component for VI3 that we are going to mention here is
VMware Consolidated Backup, or more commonly known as simply VCB. A
major challenge with a virtual infrastructure has been backing up the environ-
ment in a specific backup window. While we will go into more details of all of
the available backup options in Chapter 11, we feel it is important to mention
the basics of VCB here.

VCB is a separate component that must be installed on its own physical Win-
dows 2003 server, and no, it cannot be the same system as your VirtualCenter
Management Server. When configuring shared SAN storage for use within a
virtual infrastructure, the same LUNs must be made available to the VCB
“Proxy” Server. With the proper SAN configuration VCB can be run in one of
two ways. First, it can mount the VMDK files of the virtual machines as drive
letters to the proxy server. The individual files on the VMDK can then be ac-
cessed by a typical tape backup agent and backed like any other file on the VCB
proxy server. The second method that can be leveraged with VCB is as an im-

 39

age level backup. This mode will allow VMDK files to be backed up as image
files, typical to how backups are managed using existing third party backup
tools.

Figure 2- 4: DRS

Figure 2-4 highlights the basic steps involved in a VCB backup job.

A snapshot of the virtual machine is taken. This unlocks the VMDK file(s) for
use on another system.

The VMDK file(s) is mounted to a VCB Proxy server as a drive letter or a full
image export is performed.

A backup server grabs the individual files or the exported image and moves it
off to short or long term storage in the enterprise backup infrastructure.

The main advantage of using VCB over one of the available third party tools is
that no host resources are used while backing up the infrastructure. While this
may seem like the ultimate solution, there are quite a few intricacies in planning
for VCB. Please make sure you blast through Chapter 11, where we will discuss
this and other solutions in painstaking detail, before deciding that this is the
only backup solution for you.

 40

Now that we have described all of the things VI3 is capable of providing it is
time to start digging into the details of how it works. The rest of this chapter
will focus strictly on ESX Server 3. The other functionality will be fully de-
scribed in the remaining chapters of this book.

ESX Server 3 Architecture
Now that a majority of the typical sales and marketing information that most
people reading this book aren’t interested in is out of the way, it’s time to truly
dig into the architecture of ESX Server 3 to see what really makes it tick.
VMware ESX Server 3 is an advanced operating system with an intricate archi-
tecture. While we will not go into details of every last aspect of the internal
workings, a feat that would be an entire book upon itself, we will go over the
common components that are interacted with most commonly. Figure 2-5
shows a 10,000 foot view of the primary architectural components that we will
discuss in this section.

Figure 2- 5: ESX Architecture

 41

Service Console

The service console of an ESX server is commonly referred to as the Console
Operating System, or COS. VMware has put forth an impressive effort to
deemphasize the use of a COS in the new ESX 3 architecture and remove all
references of the term from people’s memory. Their long term goal is to even-
tually make it completely disappear entirely. To please VMware and help them
in their efforts we will make every attempt to use the currently proper term
“Service Console” in this book. In the event we miss an instance or two, Serv-
ice Console should be considered synonymous with Console Operating System.

The Service Console is a Red Hat Enterprise Linux 3 (Update 6) based Linux
distribution that is heavily modified and stripped down to provide a lightweight
management interface of the VMkernel to the end user. A primary function of
the Service Console is to bootstrap and turn over full control of all hardware
resources to the VMkernel. The service console is assigned a default value of
272 MB of physical host memory to execute processes and manage the small
amount of physical hardware that the VMkernel doesn’t manage. It runs as a
privileged virtual machine inside the VMkernel and is subject to resource alloca-
tion and scheduling alongside other virtual machines running on the ESX host.
Overall, the Service Console is responsible for quite a few things that are vital to
the proper operation of ESX.

User Interaction with ESX – The Service Console is responsible for managing the
various methods to communicate with the ESX host. In order for an end user
to interact directly with the VMkernel the Service Console must be used in
some fashion. Several services are run in the Service Console that allow user
interaction with the host using various methods such as:

• Direct Console Access

• SSH Access to the Console

• Web Management Interface (Which is also responsible for provid-
ing the SDK programmatic interface to ESX Hosts)

• Proprietary Communication Methods from 3rd Party Software

Managing Secure Access to the Host – When a user communicates to the ESX host
using one of the above methods there are several security mechanisms available
in the Service Console to prevent unwanted access. The Service Console man-

 42

ages user authentication using standard Linux authentication mechanisms. In
addition, an iptables firewall is enabled by default that allows only the type of
access to the system necessary for support and management. For details on
properly securing an ESX host please reference Chapter 9 of this book.

Running Support Applications - There are many command line tools available that
allow a user to manipulate either Service Console or VMkernel information.
These applications can be used to perform most any Linux function inside the
management interface. While interfacing with the Service Console you will
probably run across quite a few recognizable commands that are available in any
standard Linux distribution. In addition to these standard utilities VMware has
provided several of their own tools to both ease Linux management and interact
directly with the VMkernel for virtual machine management. Unfortunately,
with VMware deemphasizing the use of the Service Console, many tools that
were available in previous versions of ESX are now missing. If there is one
thing that VMware should learn from Microsoft it is that you do not mess
around with an administrator’s command line tools because THEY feel they are
no longer needed.

Manage Access to Non-Core Hardware – The VMkernel directly controls access to
CPU, Memory, Disk, and Network hardware resources. In order to trim some
of the fat from the VMkernel, VMware decided that any non-critical hardware
resource should still be managed by the Service Console. Some devices that
must be emulated on a virtual machine and accessed through the service con-
sole are:

• Serial Ports

• Parallel Ports

• USB Ports

• CD-ROM Drives

VMkernel
As previously mentioned, the Service Console is responsible for bootstrapping
the VMkernel. The big question is “What is the VMkernel?”

 43

The VMkernel is VMware’s core operating system that assumes responsibility
for all hardware management and resource scheduling, and other major virtual-
ization tasks on the ESX host. The process in which the Service Console
bootstraps the VMkernel is similar (but by no means identical) to the way in
which Microsoft DOS was used to bootstrap Novell Netware. When the
VMkernel takes over the hardware resources of the host, the Service Console is
warm booted and managed as a virtual machine within the VMkernel.

The VMkernel is what makes virtualization with VMware ESX Server possible.
The following is an overview of the primary functions that the VMkernel is re-
sponsible for.

Scheduling CPU, Memory, and Storage Resources – The VMkernel is responsible for
scheduling and ensuring virtual machines have access to the resources they re-
quire. We will talk about several mechanisms that the VMkernel uses to priori-
tize resource assignment when multiple virtual machines attempt to access more
resources than are available. You may also notice that the VMkernel doesn’t
manage network scheduling. The simple reason for that is that there is no
scheduling of network resources. Due to the time sensitivity of the TCP/IP
protocol, any form of delays due to scheduling will potentially cause transmis-
sion issues.

Manage Memory Page Tables – The VMkernel has some very advanced memory
virtualization and tracking mechanisms that, under the proper circumstances,
can actually allow you to over-allocate memory resources of a host for virtual
machine utilization. We will discuss these various mechanisms in detail when
we discuss memory virtualization later in this chapter.

Manage the Virtualization Storage Subsystem – In addition to having a network stack
integrated into the VMkernel, the newest revision of ESX also has an enhanced
storage subsystem. This has support for a limited amount of storage types and
file systems. When combined with the network stack, there are several low-cost
storage alternatives available that have previously eluded virtual infrastructures.
Detailed specifics on storage types and file systems are highlighted in Chapter 5.

Manage the Virtualization Network Stack – Unlike previous versions of VMware
ESX Server, ESX 3 has a network stack built into the VMkernel. While this
increases the size of the VMkernel footprint, it opens essential functionality for

 44

low-cost storage alternatives. An additional benefit of having a network stack
available directly to the VMkernel gives further flexibility to the virtual infra-
structure through several virtual networking enhancements while minimizing
the overhead caused from virtualization. Some of these features include, but are
not limited to the following. If you do not understand all of the terms, don’t
worry, Chapter 6 is where all the terms will be fully described.

• Virtual Switches

• NIC Teaming

• VLAN Tagging

• Port Groups

Support for Loadable Modules – Much of the VMkernel’s advanced functionality is
made available through loadable modules. Having standalone modules that can
be loaded into the VMkernel provide a simpler mechanism for updating the
specific functional components without having to update the entire VMkernel.

Support for User World Processes – User World Processes are new to ESX 3 and are
specially compiled binaries that are managed and scheduled by the VMkernel.
These processes are similar to standard Linux processes with the exception that
they are run in the VMkernel space and have no impact on the Service Console.
The most significant benefit of this is that processes that were previously
pinned in the Service Console were forced to only run on CPU0 of the physical
server. Since User World applications are managed by the VMkernel, they have
access to all CPUs in the physical host.

The User Worlds provide limited Linux syscall support for User World Proc-
esses. It is important to note that User Mode Processes are not standard Linux
processes and must be compiled against the proper VMkernel headers to prop-
erly function. VMware has made the use of User Worlds available to members
of their Community Source Program and several ISVs have begun to take ad-
vantage of this technology. Many of VMware’s internal processing has also
moved into the User World applications, which has lowered virtualization over-
head on tasks and processes that were common in ESX 2.X.

 45

VMX

The VMX is a User World application (vmware-vmx) and is actually the primary
driver for the creation of User Worlds in the first place. In previous versions of
ESX, VMX applications were run directly in the service console and were re-
sponsible for memory and CPU virtualization overhead. Now that these proc-
esses are scheduled by the VMkernel, the memory requirements of the Service
Console are drastically lowered and there is no longer a tiered memory assign-
ment/virtual machine relationship for the Service Console.

There are many functions that are often overlooked in a virtual infrastructure
that are made possible by the VMX process for a virtual machine.

• Emulation of non-critical hardware resources through a Service
Console Proxy (Video, CD-ROM, Serial Ports, Parallel Ports, etc)

• Bootstraps the virtual machine

• Communicates with User Interface components of ESX (Remote
Console, etc)

By running “esxtop” in the service console you can actually view the various
vmware-vmx worlds and how much utilization they are leveraging in the
VMkernel. You may need to use the “e” command and choose a virtual ma-
chine GID to properly view the worlds, including VMX threads that are sup-
porting that virtual machine.

VMM

The VMM, or Virtual Machine Monitor, acts as the traffic cop between a virtual
machine and the VMkernel. There is one VMM process per virtual machine,
and within a VMM process there is one thread per virtual CPU configured for
that virtual machine. The VMM has several functions based on the type of re-
source being requested. The VMM has varying access to the physical hardware
of the system to help enhance the overall performance of the VMkernel.

In the event that a virtual machine is requesting CPU resources the VMM de-
termines if the instruction can be executed directly on the hardware, or if the
VMkernel must be used to virtualize the call in a secure protection ring of the

 46

processor. Don’t worry; we make this easier to understand in a few moments
when we start talking about actual CPU virtualization.

In regards to memory, the VMM is responsible for presenting non-contiguous
physical memory pages as contiguous to the virtual machine. In addition to
presenting these pages, it is also responsible for maintaining maps of the “vir-
tual” memory pages back to the physical. This tracking opens up some unique
opportunities in the virtualization space that we will talk about in the memory
virtualization section on this chapter.

The VMM also has the task of passing other hardware calls to their proper
components. Network and storage I/O traffic is handed off to the VMkernel
to be processed by their respective stacks that are built-in to the VMkernel.
Non-critical hardware calls are passed by the VMM into the VMX, which emu-
lates the hardware functionality. Hardware access of CD-ROM, Serial Ports,
Parallel Ports, and USB Ports are examples of hardware devices passed to the
VMX.

Like the VMX components loaded into the VMkernel, you can also see VMM
processes in the esxtop Service Console application. As before, you may need
to expand the world groups to properly see the various VMM threads.

Hostd
Hostd is a daemon that runs within the Service Console that is responsible for
the management of the ESX host. It provides the necessary communication
link between external applications like VirtualCenter and the VMkernel. Hostd
uses loadable libraries to manage various aspects of managing an ESX host
server such as:

• Host Information

• Host Configuration

• Virtual Machine Inventory

• Virtual Machine Control

• Organize Performance Data

 47

As mentioned earlier, VirtualCenter communicates with the Hostd daemon
when specific functions are requested that affect a host server. Additionally,
applications that leverage the VMware SDK to communicate directly with a
host also communicate through Hostd using a SOAP interface.

Authd/VMKAuthd
Within the ESX infrastructure, VMware needed to provide a secure mechanism
to manage virtual machines and minimize the risk of external access corrupting
the environment. The Authd and VMKAuthd work in conjunction to provide a
secure ticketing solution that allows that secure access to the VMkernel for sys-
tem management and interaction.

The Authd daemon sits in the Service Console and manages connections and
authentication requests coming into the host using TCP port 902. Since we
never want unsecure access to the VMkernel, the Authd process will authenti-
cate the user requesting access, and assuming the proper credentials are speci-
fied, supplies a ticket to the remote client. In addition to assigning the ticket to
the client, the Authd process also sends the ticket to a location that the
VMKAuthd daemon, which is a User World process that listens on TCP Port
903, can also access. The client will communicate with the VMKAuthd daemon
and the secure ticket is verified. Once the ticket is verified, the client can di-
rectly access the VMX, which if you remember also exists in the User World
space. Remote console connections and virtual machine management may now
occur directly with the VMX in the User World without using any Service Con-
sole resources.

The reason for the multi-step ticketing mechanism is because of the native secu-
rity provided by the VMkernel and User World applications. The Authd dae-
mon, or any process in the Service Console for that matter, has no way to
directly access or turn control over to a process running in the User World.
Generating a shared ticket and allowing the VMKAuthd daemon to grab it for
verification is what ultimately allows the client to communicate directly into the
User World space.

Now that you hopefully have a solid understanding of the magic that makes
virtualization possible using VMware ESX Server 3, its time we take a look at all
of the advanced functionality that the VMkernel brings. We have made several

 48

references to advanced functionality of the primary resources involved in virtu-
alization. It’s time we take an in-depth look at what all of the various VMware
virtualization components opens up for your environment and how they allow
you to maximize the physical resources available on your server.

Core 4 Resources – In Depth
There are four core resources that you need to strongly consider when you re-
view and design your virtual environment. These resources are what we origi-
nally titled the “Core 4”. Properly understanding and configuring these
resources are essential to maintaining a stable virtual environment. This section
focuses on these “Core 4” resources and how they pertain to VMware ESX
Server 3 and its guests.

Processor
Assuming you are utilizing a processor that meets the requirements of ESX
server, your guest will see the same physical processor that’s installed on the
host server through processor virtualization. By presenting the host processor
type to the guest, the VMkernel does not need to perform any emulation to en-
sure compatibility between the virtual machine workload and the physical hard-
ware. This information is essential when dealing with operating systems that
load a different kernel that is based on a specific processor architecture. Trying
to run a virtual machine’s Intel instructions on an AMD processor would re-
quire emulation of the processor type and would literally destroy the perform-
ance on an ESX host with the number of processing cycles required to perform
the translation.

Virtual machines are assigned virtual CPUs as they are built. Each virtual CPU
acts as a slice of a physical CPU core on the ESX host. New in ESX 3 is the
capability to provide up to four virtual CPUs to a single guest operating system.
When we start talking about Virtual SMP a little later in this chapter, you will
see why that does not equate to 4X the performance of a single virtual CPU
virtual machine. Overall, any single ESX host can have up to 128 virtual CPUs
active at any given time. Remember, the VMkernel requires scheduling re-
sources for each of these virtual CPUs, and at a point the amount of overhead
required for scheduling will start to degrade the overall performance of all vir-
tual machines running on the host.

 49

Execution Modes

ESX 3 has two different data execution modes depending on the type of work-
load being requested; Direct Execution Mode and Virtualization Mode. Direct
Execution mode is by far the preferred method of data execution and ESX will
leverage this whenever possible. This mode allows the VMM running the vir-
tual machine to directly access physical hardware resources of the host to proc-
ess data. By running an instruction directly on the underlying hardware, the
VMM does not need to virtualize any processing calls and can generate near
native performance of the requested instruction. The amount of instructions
typically being executed in Direct Execution mode is higher than those in Virtu-
alized Mode, but there are always exceptions. To determine the overall utiliza-
tion of Direct Execution Mode calculations in a guest operating system you
should look at the overall percentage of User Mode Process utilization. Direct
Execution Mode is used in ESX for all processing in Protection Rings 1-3 of
the CPU as shown in Figure 2-6.

Virtualization Mode is used when direct execution of an instruction is not pos-
sible. In the case of ESX Server 3.0 this is any call that requires Protection Ring
0 access to the CPU. Ring 0 of a CPU cannot be presented directly to a guest
operating system in ESX. Intel and AMD are creating methods in which a vir-
tual Ring 0 (commonly called Ring -1) can be presented to the guest for direct
process execution through the VMM. ESX 3 cannot take advantage of this
functionality at this point. Instead, the VMM must send the instructions to the
VMkernel to execute the instruction and return it to the guest. The VMM vir-
tualizes this process to make the guest think that it is running in an actual Pro-
tection Ring 0. Due to the fact that the instructions must be virtualized and
executed within the VMkernel there is virtualization overhead associated with
these calls. The amount of overhead varies depending on the type of instruc-
tion and the overall workload being processed by the VMkernel. You can tell
how often a guest operating system needs to run in Virtualization Mode by cap-
turing the total percentage of Kernel or System Mode Process utilization.

 50

Figure 2- 6: Processing Rings

Fortunately for us, the VMM responsible for running each virtual machine
knows when an instruction requires Virtualization Mode and has the capability
to properly move itself into the proper execution mode. When the requirement
for Virtualization Mode has been met, the VMM will move itself back into di-
rect execution mode.

Hardware Virtualization Enhancements

As mentioned earlier Intel and AMD have new processors on the market that
have virtualization enhancements integrated into the processors themselves. At
this point in time VMware ESX 3.0 does support some of the functionality, but
not all. As an example, in order to run a 64-bit guest operating system ESX
requires the use of a virtualization enhanced processor. This allows the
VMkernel, which is a 32-bit kernel to run 64-bit instructions for the 64-bit
guest. Alternatively, ESX 3 does not have the capability to present a virtual
Ring 0 to the guest operating system for Direct Execution Mode processing of
Kernel Mode Processes.

 51

Multi-Core

One of the greatest things to happen to processors in the recent years is the
creation of Multi-Core processors. While the performance increase of multi-
core processors was acceptable in ESX 2, VMware has made sure that ESX 3 is
fully aware of multi-core processors and initial results show excellent perform-
ance with these new processors. One of the major challenges with multi-core
processors as the chip vendors keep cramming more into less is the amount of
bandwidth available for memory access. We will only continue to see perform-
ance increases with these processors if the system bus is capable of keeping the
rest of the system up to speed with CPU I/O. So far, VMware has been keep-
ing with per socket licensing as opposed to per core licensing, which has also
been keeping people extremely interested in the newer processors.

Hyper-threading

Hyper-threading is an Intel technology that allows a single processor to execute
threads in parallel, which Intel claims can boost performance by up to 30%.
What Intel is actually doing with this technology is presenting two logical proc-
essors to the operating system for each physical processor installed. The pri-
mary use for this technology is for enhancing task scheduling in operating
systems.

VMware ESX Server 3 has full support for hyper-threaded processors. The
additional logical processors presented to ESX are packaged with the physical
CPU and are numbered adjacently. For example, processors 0 and 1 would be
physical CPU1 and its logical counterpart and processors 2 and 3 would be
physical CPU 2 and its logical counterpart. This behavior is different than that
displayed in a typical x86 operating system in that all physical CPUs are counted
first and then the logical CPU pairs are numbered. It will be important to re-
member this numbering system if you attempt to use CPU affinity for pinning a
virtual machine workload to a specific processor on a host.

VMware’s resource scheduler is hyper-threading aware and is capable of prop-
erly balancing resource utilization across physical processors when possible.
Without this intelligence it could be possible for CPU instructions to run on a
physical CPU and its logical pair while a second physical processor on the sys-
tem is sitting idle. The increase that a system receives from hyper-threading is

 52

dependent upon how well the application running on the system utilizes the
system cache.

Be aware that some of the newer Intel processors that support multi-core proc-
essing do not have hyper-threading extensions included in the processor archi-
tecture. Please review each processor chipsets functionality before determining
if hyper-threading is to be used in your environment.

Virtual SMP

As we previously mentioned, Virtual SMP is an add-on module for VI3 that
provides the capability to configure multi-processor virtual machines. While
Virtual SMP can provide enhanced performance to your virtual machines, there
are several guidelines that should be strictly followed. Virtual SMP can just as
easily negatively impact the performance of an environment.

• Administrators should never start off by configuring a virtual ma-
chine with multiple virtual processors.

• Once upgraded to a Virtual SMP virtual machine, it is extremely
difficult (and in some cases impossible) to properly downgrade a
Windows guest.

• Utilizing Virtual SMP slightly increases CPU overhead of an ESX
host.

• Virtual SMP should only be used if an operating system and appli-
cation is fully capable of leveraging SMP extensions. Single
threaded applications are not Virtual SMP candidates.

While performing best practices analysis of environments we’ve noticed that
there are quite a few people that still start off by deploying every virtual machine
as a Virtual SMP system. The added virtualization overhead from this configu-
ration can e the source of significant performance problems as the environment
becomes more utilized. By only utilizing Virtual SMP on guests that are capable
of taking advantage of it, the virtualization overhead of an ESX host is kept
low, allowing the system utilization to be maximized.

Now that VMware has provided the capability to assign up to four virtual CPUs
to a single virtual machine extreme caution must be used when virtualizing en-

 53

terprise workloads. Even though VMware provides us with the ability to build
enterprise level applications in a virtual infrastructure, we still feel that if that
much horsepower is required that the system be built on a standalone physical
machine. When host CPU workloads are pushed to their limits, there are sev-
eral mechanisms that can be leveraged to make sure virtual machines get the
CPU cycles they need.

Scheduling

The VMkernel was designed to provide a high level of interaction with the
processors, allowing ESX to dynamically shift resources on the fly to running
virtual machines. For example, if you have three virtual machines that are run-
ning in a primarily idle state on the same host as a SQL server, ESX will tempo-
rarily shift resources to the highly utilized server to accommodate its immediate
needs. If a process is spawned on a low utilization server, the necessary re-
sources are returned to the original virtual machine to effectively run the new
application. Generally, a good rule of thumb is to allocate 6 virtual processors
per core, although we’ve worked in some environments where seeing 8-10 vir-
tual processors per physical core not out of the question. The types of proces-
sors also need to be considered when performing these sizing decisions. These
numbers may be slightly lower if older hardware is being reprovisioned for vir-
tualization, and slightly higher as new processor architectures hit the market.
ESX does have a hard limit of 128 virtual processors that may be assigned
within any single host. With larger systems such as 8 or 16-way hosts, this limit
should be considered during the design process of your infrastructure. This
limit can be broken down any number of ways mixing single processor and Vir-
tual SMP virtual machines.

If further sharing granularity is required, ESX provides several mechanisms for
manually adjusting processor allocation. This may be useful when one system
requires a higher priority than others, such as a database server that is handling
transactions for several different applications on the same host.

Processor Share Allocation

One of the easiest ways to modify the default processor allocations of a virtual
machine within ESX is to utilize shares. Shares are a mechanism to allocate
resources relative to all virtual machines running within a specific host and are
used in several instances. Using this method you can assign priority to specific

 54

virtual machines when the host becomes limited on processor cycles. As you
add more virtual machines to a host, the total number of shares goes up and the
percentage of total shares to a particular guest goes down. A server that has
1000 shares will receive twice the priority when assigning CPU cycles as a host
with 500 shares. The downside to this method is that with each new virtual
machine created the allocation to existing machines decreases, which will
slightly decrease their performance when the host system is under heavy load.

CPU Reservations and Limits

Within VMware ESX Server 3 you may assign a minimum (reservation) and
maximum (limit) value in Megahertz for the processing resources of a virtual
machine. By setting a reservation you are telling ESX to always ensure a par-
ticular virtual machine has the specified horsepower available when it needs it.
This does not mean that a virtual machine must use the total reservation. If a
virtual machine is sitting mostly idle, other virtual machines on the same host
may use the reserved resources. If the idle virtual machine has a sudden need
for CPU resources to process a workload, the reservation guarantees that the
CPU cycles that were previously scheduled elsewhere are immediately available.
The main thing to consider if you are going to be using CPU reservations for
your virtual machines is that you must have the resources available before you
can turn a virtual machine on. As an example, if you have a 4GHz processor
with four virtual machines, each with a 1GHz reservation, you will not be able
to power on any other virtual machines if the four machines with a reservation
are all running. The default value for a newly created virtual machine is “0”.
This means a virtual machine has no guaranteed resources unless a reservation
is set. To assign priority when virtual machines become contentious for CPU
cycles and there is no reservation, CPU shares are leveraged.

Specifying a limit for a virtual machine has the exact opposite effect as setting a
reservation. A limit provides a hard value in Megahertz that a particular virtual
machine may not exceed. There are two key instances in which setting a limit
on a virtual machine can be beneficial to the virtual infrastructure. First, by set-
ting a limit you can tell ESX to allocate a maximum MHz value to a problematic
virtual machine. This would provide a level of protection to the other virtual
machines trying to compete for the same host resources as a machine that has
runaway processes wasting CPU cycles. The second instance in which a limit
can be helpful is for managing the expectations of application owners or devel-
opers on a low-utilization ESX host. If there are a small amount of virtual ma-

 55

chines on a new ESX host there will be no resource contention and each VM
will have access to the resources that it needs. As the host becomes more util-
ized by adding new virtual machines the performance of the original applica-
tions will slowly deteriorate. By setting a limit when the original virtual
machines are first configured there will be no surprises later on as more VMs
are introduced into the infrastructure.

Setting reservations and limits are independent of one another. You can choose
to set only a reservation, only a limit, or specify both values for a virtual ma-
chine. Not setting any values gives ESX full control over the processor alloca-
tion of your virtual machines. While this is sufficient for small deployments
with a low number of virtual machines, it may be crucial to manually adjust
these values as the virtual infrastructure grows.

Affinity

In addition to setting processing thresholds using one of the previously de-
scribed methods you can also specify which physical processor(s) the virtual
machine can use. This gives you complete control of the where the processing
for a virtual machine occurs. Not only can you specify that a virtual machine is
guaranteed a minimum reservation of processor and that it has a high level of
priority in receiving additional allocations, you can also specify the exact proces-
sor or group of processors that proves the resources. Using this methodology
you have complete control over how a production infrastructure reacts on a box
and can ensure that every virtual machine has the proper resources without in-
terfering with other critical applications.

Again, processor affinity is not limited to specifying a single processor. By
specifying a group of processors you can tell ESX that it is allowed to allocate
resources only from the selected CPUs, leaving the remaining processors inac-
cessible to the virtual machine. Application servers such as Citrix servers can be
pinned to different physical CPUs to minimize the amount of scheduling re-
quired for kernel level calls from multiple systems. Support servers may then be
pinned to the remaining processors and be allowed to share those resources
amongst each other. This allows for a layer of isolation for resource allocations.
Typically, as shares are granted and removed from the entire pool of processors
every guest on the host is impacted. By utilizing processor affinity, the support
servers may dynamically adjust their processing resources while the Citrix serv-
ers react as if business is normal.

 56

Using processor affinity should be considered an advanced configuration and
should only be leveraged if there is a specific need. If advanced VI3 functional-
ity such as DRS and VMware HA will be used in the environment there can be
severe implications to using affinity that need to be considered. As virtual ma-
chine resources move across hosts in a pool, the affinity settings will also at-
tempt to follow. If other virtual machines are using affinity, there may be
conflicts with reservations that will not allow a virtual machine to receive all of
the resources the reservation requires.

Memory

Memory easily has some of the most advanced functionality available to
VMware ESX Server. Memory is used in several locations in the ESX infra-
structure and VMware employs several memory saving techniques to allow for
the most optimal use of the physical hardware.

VMware ESX Server requires a certain amount of memory to be assigned to the
service console. Versions of ESX Server prior to 3.0 required a varying amount
of memory based on the number of virtual machines that the host would run.
It was not uncommon to see hosts configured with anywhere from 200-800MB
of memory. In addition, environments that grew beyond expectations often
had to have their memory setting changed, which required a host reboot. The
reason for this dynamic memory configuration was because the Virtual Machine
Monitors (VMMs) that we described earlier had to run inside the Service Con-
sole.

In the new ESX 3 architecture the VMMs now run in a User World, whose re-
sources are assigned and controlled by the VMkernel. The default value of 272
MB of memory should be more than enough for nearly every ESX Server envi-
ronment. The only time it may be necessary to increase the amount of memory
in the service console is in the event that multiple monitoring or backup agents
are being run in the service console. The amount of memory that must be in-
creased completely depends on the applications and agents running.

Any memory that isn’t assigned to the service console is automatically given to
the VMkernel for allocation and management. The VMkernel will assign mem-
ory to each powered on virtual machine based on that machines memory as-
signment. In addition, each virtual machine will consume a small amount of

 57

memory for virtualization overhead. The amount of overhead memory depends
on the configuration of the virtual machine itself such as the total amount of
memory assigned. Alternatively, you will typically see 64 bit guests leveraging
more overhead memory than 32 bit guests.

The VMkernel memory manager used some advanced techniques when allocat-
ing memory resources to virtual machines. There are several methods that the
VMkernel uses to optimize the system performance, and in some cases allow a
host to allocate more memory to virtual machines than is physically available to
the host.

Basic Over-commitment

One of the simplest memory management techniques employed by ESX Server
3 is basic over-commitment. This method allows you to assign more memory
to virtual machines than what exists on the physical host. As a simplified ex-
ample, a host with 1GB of memory can have three virtual machines configured
each with 512MB of memory. The premise behind this being not all memory
from all virtual machines will be active at the same time. Virtual machines that
are not actively using memory pages can temporarily give them to other guests
that are more active. When the virtual machine that gave up the memory re-
sources becomes more active, the VMkernel will wipe the memory pages clean
and reassign them back to the original guest.

Basic over-commitment works well when the total amount of active memory
doesn’t exceed the amount of physical memory installed in the ESX host.
When this condition is met the VMkernel must use some alternate mechanisms
to allow virtual machines to continue running. Like processing resources, ESX
has the capability to dynamically optimize utilization by using “shares” to pro-
vide priority to virtual machines. When memory pages become available on a
highly utilized system, shares dictate which virtual machines get access to the
physical memory pages and which need to use an alternate mechanism to store
memory.

These methods provide basic memory management for your virtual machines.
VMware ESX Server also leverages several other techniques to allow for the
over-commitment and management of memory resources: Transparent Page
Sharing, ballooning and swapping. While we recommend only using sharing

 58

and ballooning for production systems, swapping can be utilized to further
maximize development hosts and allow more guests. Using the following tech-
niques, it’s not uncommon to achieve over allocation of 20-30% in a production
environment and up to 100% in development.

Transparent Page Sharing

When a guest operating system is loaded, there are many pages in the memory
space that are static and contain common pages found on all similar operating
systems. The same can be said about applications that run inside the guest oper-
ating systems. The VMkernel contains a Transparent Page Table that keeps
track of the memory pages in the virtual machine and maps them to the mem-
ory pages in the physical memory in which they are stored. A basic overview of
this technology is highlighted in Figure 2-7.

Figure 2- 7: Transparent Page Sharing

The transparent page tables provide a mechanism to share this space among
several virtual operating systems. By mapping identical virtual page numbers
back to physical page numbers, guests that are using identical space in the ma-
chine page space can share these resources. This lets the system free up memory
resources for over allocation without impacting any guests. The VMkernel
automatically performs Transparent Page Sharing takes place automatically it is
the only memory allocation method that takes place without the host running at
maximum memory use.

 59

Ballooning

When over-commitment is occurring beyond a point that Transparent Page
Sharing is optimizing the system performance VMware has provided functional-
ity to let the guest operating system decide what memory it wants to give back
for sharing. This is made possible by using a memory reclamation process called
“ballooning.” Ballooning consists of a vmmemctl driver installed in the virtual
machine that communicates with the VMkernel. This driver emulates an in-
crease and decrease in memory pressure on the guest operating system and
forces it to place memory pages into its local swap file. Once the memory is
paged locally on the guest operating system, the free physical pages of memory
may be reallocated to other guests. Since the ESX host sees that memory de-
mand has been reduced inside the virtual machine it will instruct vmmemctl to
“deflate” the balloon, thus reducing pressure on the guest OS to page memory.
If the vmmemctl driver is not installed or running on the guest, the standard
VMware swap file method is utilized. The vmmemctl driver is the preferred
method of memory collection as the guest operating system gets to call its own
shots.

Swapping

ESX has its own application swap file that is configured when the system is
built. This file is independent of both the Service Console and page files setup
within the virtual guest operating systems. VMware recommends that this swap
file capacity be set to the total amount of memory that will be allocated to all
virtual machines. This allows up to a 100% over allocation of memory resources
using paging. This is not recommended though, as paging large amounts of data
requires additional CPU resources and tends to have a negative impact on the
host. When an ESX system becomes over allocated beyond the point that
Transparent Page Sharing and Ballooning can recover memory, the VMkernel
takes it upon itself to swap memory to the ESX page file. This differs from
ballooning in the fact that the VMkernel decides what memory to swap, regard-
less of whether the guest is using it or not. This technique may be useful in a
development environment where paging will have less of an impact on the
overall performance of the environment, but should be avoided at all costs on a
production host.

 60

Idle Memory Tax

When memory share allocation takes effect, VMware provides a mechanism to
prevent virtual machines from hoarding memory they may not be utilizing. Just
because a particular server has four times the memory share priority than an-
other does not mean it requires it at the time allocation takes place. VMware has
a process that applies an idle memory tax. This associates a higher “cost value”
to unused allocated shares than it does to memory that is actively used within a
virtual machine. This allows the virtual machine to release it for use on other
guests that may require it. If the virtual machine in question has a need for the
memory, it still has the proper authority to reclaim it as it still has priority over
the memory space. A default value of 75% of idle memory may be reclaimed by
the tax.

NUMA

With the increasing demand for high-end systems today’s hardware vendors
needed an affordable and easily scalable architecture. To answer these needs the
NUMA (Non-Uniform Memory Access) architecture was developed and
adopted by several hardware vendors. NUMA functions by utilizing multiple
system buses (nodes) in a single system connected by high speed interconnects.
Systems that have NUMA architectures provide certain challenges for today’s
operating systems. As processor speeds increase memory access bandwidth be-
comes increasingly more important. When processors must make a memory call
to memory residing on a different bus it must pass through these interconnects.
This process is significantly slower than accessing memory that is located on the
same bus as the processor. VMware ESX 3 is a fully NUMA aware system.
These optimizations are applied using several methods.

Home Nodes. When a virtual machine initially powers on, it’s assigned a home
node. By default it attempts to access memory and processors that are located
on its home node. This provides the highest speed access from processor to
memory resources. Due to varying workloads, home nodes alone do not opti-
mize a system’s utilization. For this reason it’s strongly recommended that
NUMA nodes remain balanced in terms of memory configuration. Having un-
balanced memory on your nodes will significantly negatively impact your system
performance.

 61

Dynamic Load Balancing. At a default rate of every two seconds, ESX checks the
workloads across the virtual machines and determines the best way to balance
the load across the various NUMA zones in the system. If workloads are suffi-
ciently unbalanced, ESX will migrate a VM from one node to another. The al-
gorithm used to determine which VM to migrate takes into consideration the
amount of memory the VM is accessing in its home node and the overall prior-
ity of the VM. Any new memory pages requested by the VM are taken from its
new node while access to the old pages must traverse the NUMA bus. This
minimizes the impact of a guest operating system from a migration across
nodes.

Page Migration. While dynamic migration of a virtual machine across nodes limits
the impact on the guest, it does not completely eliminate it. Since memory pages
now reside on two nodes, memory access speeds are limited by the fact that the
processors do not have direct access to them. To counter this, ESX implements
a page migration feature that copies data at a rate of 25 pages per second (100
kb/sec) from one node to the other. As it does this the VMkernel updates the
PPN to MPN mapping of memory to eliminate virtualization overhead.

Storage

Storage in VMware ESX 3 comes in several flavors. In addition to the tradi-
tional local SCSI and Fiber attached SAN options, ESX 3 also supports new
low-cost storage alternatives in the form of iSCSI and NFS. When dealing with
storage for ESX 3 there are two things that need to be considered; the installa-
tion point for ESX Server itself and storage space required for storing your vir-
tual machine data.

Install Point

A requirement of VMware ESX Server 3 is that it must be installed on a server
to properly function. The installation of ESX server itself takes about 1.2 GB
of storage space. You are not alone in thinking “This will not come close to
filling up my 146GB SCSI drive”. ESX 3 is optimized for performance and
many packages that can bloat the installation are not included. Having a small
storage footprint for the VMkernel and other installed packages fits perfectly
into the Boot from SAN model, in which a small LUN can be presented to the
host and leveraged as the installation point. This would separate the entire ESX

 62

host, including configuration files, from the physical hardware. We will go into
much more detail in Chapter 5 when we discuss advanced storage planning, but
feel it is important to highlight some of the primary differences between a Local
install point and a boot from SAN model.

Local Installation

• Very inexpensive solution

• Easy to implement

• Eliminates external factors from affecting operation

Boot from SAN

• Separates install from hardware

• Easy recovery from hardware failure

• Better use of storage space (less wasted)

As you will see in the next chapter, there is a limit on the amount of space that
can be utilized on a large local hard drive when dealing with ESX. If the deci-
sion is made to leverage local storage you are better off going with smaller but
faster drives. You will also need to be prepared to waste a lot of storage space.

Virtual Machine Storage

In addition to storage space required to install and run VMware ESX Server
there is also a need to dedicate storage space to virtual machines that will be run
in the environment…a LOT of storage space. VMware has several supported
types in ESX 3 which include: Local SCSI, SAN, iSCSI, and NFS. There are
advantages and disadvantages to each solution that will be discussed in Chapter
5. As you dig further into the planning and implementation of your virtual in-
frastructure, you will quickly find that storage becomes one of the most expen-
sive components in the entire environment.

 63

VMDK Files

We say VMware requires a lot of storage for running virtual machines, but why
is that? The answer lies in the virtual machine file structure leveraged by
VMware ESX Server. Many people who are familiar with VMware Workstation
or VMware Server (GSX) may be familiar with the practice of “Copy on Write”
disks. As more data is added inside a virtual machine, the virtual machine disk
file grows. This method is NOT the case inside ESX server. When a virtual
hard drive (or VMDK) file is created, all space is immediately allocated. A vir-
tual machine that has a 40GB data drive assigned to it will immediately take up
40GB of storage space on the ESX host, regardless of how much data is stored
in the virtual machine.

Although we are withholding all of the good information for Chapter 5, we do
feel it is important to quickly describe a VMDK file. A VMDK file is actually
made up by a set of files (typically two) that acts as a physical hard drive device
inside the guest operating system. Inside the virtual machine, a VMDK file ap-
pears as and is accessed like any typical SCSI drive in a physical server.

VMFS

VMware stores VMDK files inside a file system that is customized for speed
and high availability called VMFS (we make an assumption that this stands for
either Virtual Machine File System or VMware File System). In versions of
ESX server prior to 3.0, VMFS was a flat file system with no capability to store
or organize files in subdirectories. Every VMDK file was stored directly on the
root of the file system. We noticed that this design made some VMware ESX
implementations quite interesting when it came to data management at the
VMFS level. Because VMFS was a flat file system, the only items worth storing
inside a VMFS partition were either VMDK files or REDO files (which are the
old name for Snapshot files, which we will discuss shortly).

ESX 3 has now introduced a new version of VMFS, which is simply called
VMFS3. The file system now has a directory structure available in which subdi-
rectories can be used to organize data per virtual machine. In addition, more
information is stored within each virtual machine’s subdirectory such as virtual
machine configuration information and log files. Having these files available
inside VMFS is what makes rebooting a virtual machine using VMware HA
possible, assuming you are using a centralized storage infrastructure of course.

 64

Snapshots

We previously made a brief mention of REDO and Snapshot files but didn’t
really describe them. Both REDO and Snapshot files are extremely similar.
REDO files were used in versions of ESX prior to 3.0, and Snapshot files are
the new standard. Since this is technically a book on ESX 3, we will leverage
the use of the name “Snapshot”. Creating a “Snapshot” for a virtual machine
forces the VMkernel to create a Snapshot file alongside the VMDK file in the
VMFS file system. As soon as this action occurs, the VMDK file is unlocked
and all data changes are written to the Snapshot file. Once a Snapshot has been
established, a virtual machine can be reverted to its original state, or the Snap-
shot data can be applied into the VMDK file. Either of these actions removes
the Snapshot from the virtual machine.

New to VMware ESX 3 is the capability to create multiple branches from a sin-
gle VMDK file using multiple Snapshots. We will go into more detail on this
advanced topic in Chapter 5. There are actually several instances in which
Snapshots can play a crucial role in your virtual infrastructure.

• Unlocking VMDK files for image level backups

• Testing application changes/upgrades before permanently applying
them

• Branching several development configurations from a single tem-
plate virtual machine

Network

Networking in VMware ESX 3 is another topic that is deserving of its own
chapter in this book. Although Chapter 6 is completely dedicated to the ad-
vanced networking strategies of ESX 3, we feel it is important to describe some
of the basic terms and give you an overview of the networking capabilities of
the VMkernel. Figure 2-8 displays a basic configuration and highlights the ma-
jor components involved in ESX networking.

 65

Figure 2- 8: Network Infrastructure

Physical Network – In order for your virtual machines to communicate with the
rest of your environment the ESX hosts must be connected to the physical
network. We will discuss several options in Chapter 6 to enhance performance
and provide high availability to your virtual infrastructure.

Physical NIC – Multiple physical NICs can be leveraged on an ESX Server for
load balancing and high availability. VMware ESX can use 10, 100, or 1000Mb
networking, and VMware is currently working on support for InfiniBand net-
working. The maximum number of physical NICs varies based on network
card vendor and speed.

Virtual switch –A virtual switch is just what its name describes—it emulates a
physical switch for the guests that are configured to utilize it. From 1 to 32
physical NICs can be used to create a virtual switch on an ESX host. In addi-
tion, a special type of virtual switch can be created without any physical NICs.
This type of switch will be discussed in Chapter 6.

Virtual Switches can be configured with multiple ports that again, act similarly
to ports of a physical switch. When you create a virtual machine with a virtual
NIC and assign it to a Virtual Switch you use one port of that virtual switch.
The default number of ports assigned to a virtual switch in ESX Server 3 is 56,
and the maximum number of ports that you can assign to a single virtual switch
is 1016.

 66

Virtual switches are responsible for load-balancing virtual machines across all
physical NICs used to create the switch. If one physical network switch port or
Physical NIC were to fail, the remaining Physical NICs in the bond that makes
up the virtual switch would pick up the workload. Another feature of the vir-
tual switch is that any traffic between VMs on the same virtual switch is typi-
cally transferred locally across the system bus as opposed to the across network
infrastructure. This helps to lessen the amount of traffic that must travel over
the wire for the entire host. An example of where this may be used is a front
end web server making database queries to another server configured on the
virtual switch. The only traffic that traverses the network infrastructure is the
request from the client to the web server.

Port Group – Port Groups are logical groups of ports of a virtual switch that
have common configurations. Port Groups are not assigned with a static num-
ber of available ports. Any time a virtual NIC is configured to use a specific
Port Group within a virtual switch it uses one available port of the virtual
switch and the Virtual NIC is added to the Port Group.

As previously mentioned, several common configurations are shared amongst
all Virtual NICs assigned to the same port group. These configurations include:

• VLAN Configurations

• Security Settings

• Bandwidth Control Policies

• Load Balancing Mechanism

Virtual NIC – In order for virtual machines to communicate over the network
they must contain at least one Virtual NIC. A Virtual NIC is mapped to a Port
Group on a Virtual Switch which is made up of one or more Physical NICs on
the Physical Network (See how it all comes together at the end?). A single vir-
tual machine can have as many as five Virtual NICs installed. It is uncommon
that a standard virtual machine configuration would need more than two NICs.
We have seen some instances of virtual machines acting as routers, which would
have a requirement to have a connection to multiple VLANs. The default
driver presented to the virtual machine for the Virtual NIC is an enhanced ver-
sion of the AMD PCNET adapter. While this adapter can run on older systems
with a standard driver, the VMware Tools must be installed to take advantage of
advanced functionality such as Gigabit connectivity.

 67

This section is just a primer of what to expect in Chapter 6 where we will dis-
cuss all of the available configuration options including their advantages and
disadvantages. We will also go into a bit more detail of each of the highlighted
components from this introductory chapter.

Summary
If you managed to get this far then you have more than enough information to
build and configure your own ESX server. By understanding the various com-
ponents of ESX and how they operate, you’re well on your way to managing an
ESX host. In the next chapter we’ll take this information and apply it to the
configuration of your first ESX server. By knowing the information presented
in this chapter you’ll have a good understanding of the various options pre-
sented to you during the installation process and why we make the recommen-
dations that we do. Whether you’re planning an environment of 2 hosts or 50,
the information in this chapter will act as a reference baseline for the rest of this
book.

	Cover
	Book1_Chapter2

