

 146

Chapter 5 - Storage
In the last chapter we went through the different local partitions and storage
requirements to setup ESX server. In this chapter we dive into the real meat of
ESX storage: VMFS partitions for VM disk storage. VMFS 3.21 is the current
version of the VM File System created by VMware. VMFS was created to pro-
vide storage for the extremely large files that make up VMs. In turn, the re-
quirements for large amounts of storage put a special emphasis on local and
SAN based storage for your VMs. This chapter delves into the various uses of
storage in an ESX environment.

Storage Components
The storage infrastructure that supports an ESX environment is often one of
the most complicated and misunderstood aspects of a virtualization project.
Fortunately, over the years, the popularity of virtualization has made its way
down to the storage teams and there is better awareness now than there was in
the past.

If following the best practices of not only ESX storage configurations, but also
the best practices defined for storage infrastructures, your environment should
be laid out similarly to the example illustrated in Figure 5 – 1. While this dia-
gram illustrates a typical Fiber Channel SAN infrastructure, we will find that
iSCSI follows a near identical design, only using a network communication in-
frastructure as opposed to fiber.

 147

Figure 5- 1: SAN Infrastructure

Fiber HBAs

The key component that must be installed in the ESX server for fiber-based
SAN storage connectivity is a Fiber HBA. According to the VMware documen-
tation there is a physical limit of 16 HBAs that can be installed in a single sys-
tem. Again, this is overkill. Except for the most intensive transactional
workloads, two HBAs should suffice for your host configuration. The most we
would ever recommend putting in a single system is four, assuming you are
looking to virtualize Messaging or Database applications that require more dedi-
cated throughput.

Fiber HBAs come in many flavors. We are typically seeing 1 Gb fiber HBAs
being phased out and slowly being replaced by 4 Gb fiber, but a solid majority
the implementations we are performing are using 2Gb fiber. A single 2 Gb fi-
ber adapter gives us a theoretical maximum bidirectional throughput of about
400MB/Sec, meaning you can concurrently read AND write at about
200MB/Sec each, not that you can read OR write at a total of 400MB/Sec.
1Gb adapters will be about half that speed, 4Gb adapters will give you about
double.

 148

iSCSI HBAs

When planning to use iSCSI in a production environment you will want to lev-
erage iSCSI HBAs. These adapters are used to encapsulate Standard SCSI
commands inside TCP/IP packets for remote block level storage. By providing
adapters specifically for this purpose you will offload the processing required
for the storage infrastructure to the hardware.

iSCSI HBAs must leverage a network infrastructure to communicate with
backend storage. A true production iSCSI implementation will have its own
independent network infrastructure so as not to interfere with regular network
communications. Based on this fact, the maximum speed per path in an iSCSI
implementation is 1 Gb with a maximum capability of two iSCSI HBAs (paths)
per host. While this may not be enough for the most intense of enterprise
workloads, it is definitely nothing to ignore based on the cost per performance
you receive with an iSCSI infrastructure. Based on the imminent release of 10
Gb networking not far off for VMware ESX, we are expecting these speeds to
increase drastically and give some significant competition to the performance of
fiber-based SAN infrastructures.

SAN Switches (Used with Fiber HBAs)

SAN switches are not unlike network switches in that they provide a mecha-
nism for a multiple hosts to communicate to a centralized storage infrastructure.
The configuration and use of SAN switches typically falls within the responsi-
bilities of the storage group in an organization. It is highly unlikely that you will
come across a configuration that does not use multiple SAN switches, thus pro-
viding multiple paths to your SAN infrastructure. The importance of the stor-
age infrastructure definitely demands a very highly available solution to keep
hosts and storage arrays constantly communicating with one another.

Network Switches (Used with iSCSI HBAs and NFS)

Network switches come into play when using a form of network based storage
for your virtual infrastructure such as iSCSI or NFS. It is highly recommended
that a separate network infrastructure from the production communication
network be used for the storage infrastructure. This ensures proper flow of
incoming and outgoing network communication traffic does not interfere with
disk activity, and vice versa. As a worst case scenario, a separate VLAN should

 149

be used for the storage infrastructure to ensure all the Windows broadcast gar-
bage stays away from storage communication.

The use of network switches is discussed in significantly more detail in Chapter
6 where we discuss networking in ESX Server.

Storage Arrays

Storage arrays are the key to a centralized, redundant, and high speed virtual
infrastructure. Storage arrays are used to manage and configure very large
amounts of storage for enterprise applications such as Database, Messaging, and
of course, Virtualization. VMware ESX supports fiber based and iSCSI based
storage arrays across a wide variety of vendors.

While the speed and capabilities vary widely between the various vendors and
models of storage arrays, there are several key components that are generally
found regardless of who is providing your centralized storage.

Storage Processor (sometimes called controllers)

Both Fiber and iSCSI storage arrays contain at least one, and optimally two
storage processors (SP). Storage processors manage the front end access of
hosts back to actual SAN storage LUNs. SAN’s typically come in one of two
configurations: Active/Active or Active/Passive.

Active/Active arrays are ones in which a single LUN may be accessed down
either or both storage processor concurrently. This allows for the greatest
flexibility in load balancing I/O communication down multiple paths. It should
be noted that ESX cannot take full advantage of Active/Active SANs, as there
is a limitation in the VMkernel itself which only allows ESX to communicate to
a given LUN down a single path at any point in time. It is possible within ESX
to determine which HBA a LUN uses in an Active/Active configuration at the
VMkernel level, making Active/Active arrays the optimal choice for load bal-
ancing your SAN environment for your virtual infrastructure.

Active/Passive arrays are those that only allow access to a given LUN down a
single path at a time. Multiple LUNs may be accessed down alternate storage

 150

processors. The SP that is not active for a particular LUN will act as a failover
SP for that LUN. It is possible to dictate which SP is preferred on a per LUN
basis on the SAN, but this cannot be specified on the ESX host.

Physical Disks

Prior to virtualization, many Windows administrators could have gone their
whole life thinking that a SAN consisted of some REALLY large hard drives.
The truth is, SANs are made up hard drives that are typically smaller than those
provided in new server deployments; there just happens to be a lot of them.

While we won’t go too far into actual SAN management and configuration in
this book, it is important to inform ESX administrators what it is that makes
SANs so fast and fault tolerant. The simple answer is “Lots of disks”. SANs
provide volumes to hosts by using typical RAID striping mechanisms across a
large number of disks. Typically, the more disks (spindles) that are provided,
the faster the disk access will ultimately be. There is, of course, a point of di-
minishing return which is based on your actual SAN infrastructure and how the
storage processors communicate with the disks (Typically internal Fiber or Se-
rial Attached SCSI).

Some of the more critical data LUNs not only use RAID striping, but also mir-
roring to create some unique SCSI configurations such as RAID 1+0, in which
each disk has a mirrored pair and the data is then striped across all mirrored
pairs.

It is not uncommon for an implementation to call for multiple RAID configura-
tions to be leveraged for various purposes in their infrastructure. As an exam-
ple, a set of RAID1 volumes may be created for the sole purpose of hosting
operating system partitions, as performance is not important, but redundancy is.
A set of RAID5 volumes are then created for standard data partitions where
speed is critical as well as lightweight protection from disk failure. The most
critical of data volumes may be configured in a RAID10 configuration, which
provides not only high performance, but also an extremely high level of protec-
tion of the underlying data. It is very important for the ESX administrator to
understand the backend configuration of the storage infrastructure to properly
match the role of the virtual machine disk files to the proper SAN volume on
the backend infrastructure.

 151

LUNs

Knowing what we now know about the backend storage infrastructure we can
describe what a LUN is. LUN itself stands for “Logical Unit Number” and
refers to a logical device that is presented to a host as a single physical disk.
LUNs in an ESX infrastructure are typically assigned to multiple hosts to enable
VMotion, DRS and HA functionality. When we discuss VMFS partitions later
in this chapter you will have a better understanding as to how this is possible.

Each LUN is assigned a LUN ID when it is presented to the ESX hosts. It is
extremely important that these LUN IDs stay consistent across all hosts in the
ESX cluster; otherwise it is possible to run across some strange disk signature
errors on certain hosts. It is also important that each LUN be given a unique
ID. Any two LUNs that are assigned to the same host with the same ID will be
assumed to be the same LUN. ESX will natively provide failover capabilities in
this instance, and if it has to fail over it would be quite bad for your data not to
exist on the second LUN. For this reason, if a LUN is presented down multiple
paths to the same host, it must be presented with the same LUN ID down both
paths.

A total of 256 LUNs may be assigned to any single ESX host with a maximum
size of 2TB per LUN. In addition, you want to limit the number of hosts that
can access a single LUN to prevent a bottleneck when accessing the data.
Based on some of the other limitations of building a virtual infrastructure, the
greatest number of hosts that should ever theoretically have access to a single
LUN is 32, which is the maximum host size for a DRS cluster. Trying to lever-
age LUNs across multiple large DRS clusters is not a good idea and will eventu-
ally result in choking your bandwidth to the point that the LUN is unusable.

LUNs can be used in several ways, which we will discuss throughout the dura-
tion of this chapter.

A single LUN can be configured with a VMFS file system

Multiple LUNs can be spanned together to form a single VMFS file system

 152

A single LUN may be configured for direct access by a virtual machine without
using the VMFS file system (This is called a RAW Device Mapping, or simply
RDM)

Identifying LUNs in VMware ESX Server

You may have already been poking around ESX and noticed the number for
your RAID controller or Fiber cards; it looks something like this:

Before we get to deep into this you need to understand first how VMware iden-
tifies the HBAs in your system. This numbering scheme can be seen from either
the Virtual Infrastructure Client or from within the service console. Generally
when dealing with SAN LUNs or other disks presented to the server, you will
see the first three sections of this identifier as ESX sees it: a simple disk at-
tached to the system via a Virtual Machine host bus adapter (vmhba).

The first section shows the adapter number, the next section shows the SCSI
target ID, and the final section shows the LUN number. When this numbering
scheme has four sections, the fourth section is used for partitions on specific
LUNs—not by the adapter itself.

Storage Types

So, I know I want to implement ESX, but have not decided on the storage solu-
tion yet. Which should we use in our environment: Local SCSI disks or remote
SAN, iSCSI, or NFS storage? Well the answer may well be a combination of the
various available technologies. While it is possible to run ESX without a local

 153

VFMS partition, that doesn’t mean it’s the best solution. Also, while it is possi-
ble to use all local VMFS partitions for virtual machine storage, it may not offer
the flexibility you need in your environment.

Local SCSI

In many small environments local SCSI disks are how ESX is first implemented.
Then as disk needs or the environment grows, SAN connectivity is imple-
mented and the VMs are moved to the centralized storage.

The primary reason for using local storage for your virtual machines is cost.
When comparing local SCSI disk costs to that of SAN storage, local disk is
much cheaper. In addition, if you are a small environment that does not have a
SAN right now, the initial implementation of a SAN can be a substantial in-
vestment.

The major drawback to not using centralized SAN storage is that you lose the
ability to move virtual machines quickly and easily from host to host. Touted
VMware features like VMotion, DRS, and HA require that you have a SAN
infrastructure in place to use them. In addition, if a host fails and you are using
local storage, you must recover the virtual machine disk files from either a
backup solution or some other form of network storage used for disk file back-
ups. Where, if you had a SAN, you could simply restart the virtual machines
using the existing disk files on a new host.

Configuring SCSI Controllers

The first thing you need to be aware of is that the VMkernel only supports a
specific set of controllers. The current list of supported controllers can easily
be found on VMware’s support site and should be referenced before configur-
ing hardware for ESX.

The next thing you will have to decide on is how to configure your controller
and the options available to you. If you have a controller capable of creating
multiple arrays, you have a lot of flexibility. If you have multiple controllers in
your box, you are really set up.

 154

Like database servers, it is best from a performance perspective to split up the
operating system and the application. In this case (though it is a crude analogy)
it is best to split up the service console from your virtual machines. Having two
controllers will allow you to store your service console on one controller and
your virtual machine disks and configurations on another. If you only have one
controller with the ability to create multiple arrays then that is the next best op-
tion you have. Split the service console onto the first array and the VMs onto
the second. Spread the VMFS partition for the VMs across as many spindles as
possible. A RAID 5 would be my recommendation for the VMs while a simple
mirrored set (RAID 1) is more than sufficient for the service console.

If you don’t plan on storing VM disk files on your local storage, then a single
RAID controller – even if it only supports a single array – will suffice. But this
section is really focusing on the configuration for the local storage of VMs.

• Cost. Local SCSI storage will always be cheaper than a SAN solu-
tion

• Simple to implement; requires no special SAN experience of any
additional configuration within ESX

• Makes recovering virtual machines from a failed host more com-
plex and time consuming

• Eliminates your ability to use features like VMotion, DRS and HA

• Reduces the overall scalability of your implementation

Remote Storage
The exact opposite advantages and disadvantages of local storage applies to
Remote storage for ESX. While a remote solution requires additional expense
and configurations, the benefits are enormous.

Remote VMFS partitions allow you a number of benefits over local storage.
The simple use of VMotion, DRS and HA is a huge benefit to any environment.
But add on top of the ability to have a fast, central repository for virtual ma-
chine templates, the ability to recover virtual machines on another host if you

 155

have a host failure, the ability allocate large amounts of storage (we’re talking
terabytes here) to your ESX servers, and the list goes on and on.

The real idea here is that a remote implementation offers you a truly scalable
and recoverable ESX solution. The options and features available to remote
storage users are enormous, while the limitations found in local SCSI storage are
like an anchor around an ESX admin’s neck.

In this section we will discuss Fiber and iSCSI SAN configurations as well as
NFS shares for VMFS partitions. For now let’s just look at the advantages and
disadvantages of using remote storage for your VMFS volumes.

• Allows for VMotion, DRS and HA functionality

• Allows for a centrally maintained template location

• Allows for fast recovery of virtual machines in the event of a host
failure

• Provides a more scalable storage solution for your environment

• Allows for VMs to be clustered across hosts (Fiber Only)

• Allows for physical to Virtual Clustering (Fiber Only)

• Provides the ability for your virtual machines to use RAW disks,
just like a physical machine

• More complex to manage and implement

• More expensive than local storage

Fiber Channel

Fiber Channel SAN is the most common type of storage used for VMware ESX
implementations due to its performance and scalability. Fiber Channel SANs
provide block level access to storage LUNs which allows ESX to have direct
access to the physical disk. As the name implies Fiber Channel infrastructures
connect the host to the enterprise storage through high speed fiber connections.
The current maximum supported speed for Fiber Connectivity in ESX is 4 Gb
per Fiber HBA, which equates to roughly 800 MB/Sec of bidirectional

 156

throughput (~400 MB/Sec Read and ~400 MB/Sec Write). By loading up two
4 Gb HBAs in your system and properly balancing your data LUNs down mul-
tiple paths you can easily achieve the required performance of 95% of your in-
frastructure through shared bandwidth, which is quite impressive.

A major benefit of a Fiber Channel storage solution is the fact that the entire
storage infrastructure is separate from the network infrastructure. The only
communication flowing across a proper SAN infrastructure is disk I/O. Not
only does this help from a performance standpoint, but also from a security
standpoint as well.

• Has been around a long time and is in use within many organiza-
tions

• High performance access for multiple servers

• Standalone infrastructure to support disk access

• Block level access to underlying LUN

• Supporting infrastructure is more costly than alternate remote stor-
age options

iSCSI

While it was possible to configure virtual machines to communicate with iSCSI
disks in previous versions of VMware ESX, it typically had poor performance
overall. With ESX 3, VMware has built iSCSI access into the VMkernel to pro-
vide the same level of block access to LUNs as a SAN infrastructure. This
means that ESX can now use iSCSI SANs to create LUNs and configure VMFS
file systems. At this point, iSCSI can be leveraged in one of two modes;
through a hardware initiator, which requires specific hardware for storage
communication, or through a software initiator that is integrated into the
VMkernel network stack.

The iSCSI protocol takes standard SCSI calls and encapsulates them into
TCP/IP packets for transport to a remote device. Because of this, iSCSI often
requires additional overhead because of its dependency on the TCP/IP network
stack. By using the proper hardware initiator with a TCP Offload Engine

 157

(TOE), you can significantly reduce the processing overhead incurred from
iSCSI by letting the hardware do the menial task of managing the TCP/IP stack.
This option is not available in a software initiator, and the overhead of manag-
ing the network stack is managed by… yup, the VMkernel.

A maximum of two iSCSI HBAs can be installed in any given host; each cur-
rently capable of speeds up to 1 Gb/Sec. This equates to a theoretical bidirec-
tional throughput of about 250MB/Sec per HBA, which is a bit slower than
Fiber Channel. Technology is already well down the path of providing 10Gb
networking capabilities to ESX and the VMkernel, at which point iSCSI SANs
may start outperforming some of the more expensive fiber based solutions in
place. It will probably be a slow and costly process for organizations to start
implementing a 10Gb solution in their environments, and while VMware will
support it, we don’t anticipate wide adoption for some time.

It is entirely possible to configure iSCSI communication on your regular IP
network, but definitely not recommended. iSCSI infrastructures should consist
of a separate physical network as to not interfere with regular network traffic,
and vice versa. Not only will physical separate provide the best performance, it
will also provide the best security for your iSCSI I/O infrastructure.

• Excellent cost for performance

• Provides centralized storage over a low cost communication infra-
structure

• Block level access to underlying LUN

• Will soon exceed the speed of Fiber Based SAN solutions

• Performance not yet to that of Fiber Based storage

• Will be costly to upgrade to 10Gb networking for higher speed

• Often a newer component to many organizations

NFS

In addition to supporting iSCSI, VMware ESX also has built in support for
NAS devices through the use of the NFS protocol. This allows for a second

 158

method of providing low cost network based storage to your virtual infrastruc-
ture. When ESX 3 first came out and people started dabbling with NFS sup-
port, there was a quick judgment made that it should only be used for storing
virtual machine template files and that the performance was substandard for
virtual machine utilization.

It has been found, over time that NFS actually performs extremely well in a
properly configured and structured environment. NFS has been around for a
good 20+ years now and has proven to be a very reliable centralized file system
with performance that only improves over time based on network enhance-
ments. Initial testing results that have come back show that not only can NFS
be used for running virtual machines; it is actually extremely fast when using
some of the newest available hardware.

An ESX host has the capability to map up to 256 NFS volumes, but there are
several reasons we wouldn’t recommend this that we will discuss in the next
section. For a SMB organization looking to get started in virtualization, leverag-
ing NFS is an extremely low cost way to provide a centralized virtual infrastruc-
ture that has support for the advanced virtualization technologies such as
VMotion, DRS, and HA. VMware addresses a major challenge of virtual ma-
chine sizing in NFS implementations by allowing the use of thin provisioned
VMDK files. This reports to ESX that the full size of the disk is being utilized,
but in actuality, data is provisioned and used only when requested by the guest.
This allows virtual machines to be stored in an optimized fashion for use on
NAS devices, which often have stricter limitations surrounding free space than
other types of centralized storage.

Access to NFS volumes is performed through the VMkernel network stack.
Like iSCSI, it makes sense to provide a separate network infrastructure for your
NFS for ESX implementation. It is often not possible to do this, as NFS infra-
structures have typically existed for some time in an organization. Changing the
way NFS is managed specifically for a virtual infrastructure will ensure network
activity meant for storage resources does not interfere with network activity for
regular communication and vice versa.

• NFS has been around for 20+ years and is a very stable and reliable
protocol

 159

• Often an existing component in most organizations

• Defaults to thin provisioned VMDK files for optimized storage
utilization

• Provides centralized storage over a low cost communication infra-
structure

• Will increase in speed as 10Gb networking is more widely adopted

• Performance not yet to that of Fiber Based storage

• Contains more overhead than Hardware iSCSI Initiators (No
TOE)

• Will be a costly upgrade to 10Gb networking for higher speed

Limitations of Network Based Storage

There is a common architectural issue with all types of network based storage in
the fact that there is a single bottleneck in the uplink to the storage device. In
many virtual infrastructures there could be as many as 20-25 hosts, each with
multiple gigabit connections, communicating with a centralized storage infra-
structure. If there is a lot of disk activity across the environment it will not be
uncommon for the generated throughput to be greater than what is physically
connected to the storage system. In this event you will see a spike in dropped
network packets on your ESX hosts. If you notice performance problems in a
network based storage infrastructure, look at the logical aspect of your through-
put as a first step. It may just be that you have oversubscribed your SAN con-
nectivity. Resolving these issues will require a plan of rebalancing network and
disk I/O to fit within the constraints of the storage infrastructure, or possibly
even changing to a different type of storage infrastructure for specific virtual
machines altogether.

VMFS Intro
The primary storage for virtual machine information is the VMFS volume.
VMFS is a unique journaling file system created by VMware as a low overhead,
high performance file system. The primary concern when they created this file
system was to be able to create a file system that could handle extremely large

 160

files, and provide as near to disk access speeds for virtual machine usage as pos-
sible

The VMFS-3 file system has some unique characteristics and limitations that
make it different than traditional file systems.

• Ability to span across multiple disks/LUNs

• Ability for multiple ESX Servers to concurrently access files on the
same VMFS-3 volume

• Up to 256 VMFS volumes per ESX system

• 2 TB per physical extent

• Up to 32 physical extents per VMFS volume

• Maximum size of 64TB VMFS size (using extents)

So what does this all mean to you? Let’s review each of these features quickly
and see what they mean.

Ability to span across multiple disks/LUNs

So what this really means is that you can create a single VMFS volume that
spans multiple LUNs or multiple disks. The benefit here is obvious: you can
create enormous volumes. It is important to note that creating a volume with
multiple extents does not stripe the data across multiple spindles; it simply ex-
tends the volume onto additional disks. Thanks to the fact that VMFS-3 now
uses LVM to manage volumes, losing one disk in the extent will not cause the
entire volume to fail, but it can be difficult to predict which virtual machines
won’t work and troubleshoot issues when one of the extents fails.

Ability for multiple ESX Servers to concurrently access files on the
same volume

This is really the functionality that enables VMotion and VMware HA in the
event of a host failure. The idea here is that your ESX hosts can all see the same
LUN(s). Because of this, the host almost becomes irrelevant when it comes to
storing disk files. Since multiple servers can use the same LUN, you can simply

 161

stop a VM on one host and start it on another. Or if the host fails, you can sim-
ply point a different host to the existing configuration files.

This is made possible since the VMkernel does not lock the entire VMFS file
system. The locking is done at a file level, which allows multiple hosts to access
the same volumes, but only allows one host at a time to have access to a virtual
machine’s VMDK file.

Up to 256 VMFS volumes per ESX System

This one is pretty obvious. 256 VMFS volumes can provide a lot of space. Gen-
erally we see ESX systems with no more than 10 or 15 VMFS volumes exposed
to them. So having the ability to go to 256 allows you more scalability than you
may need. We will discuss why coming anywhere near this limit is definitely not
a best practice when building a proper infrastructure when we talk about sizing
strategies later in this chapter.

2 TB Per physical extent and 32 extents per volume

These two are pretty much interwoven. The first means you can have up to 2
TB per LUN exposed to ESX that you are going to create a VMFS volume on.
And if you have a need to create a single large VMFS volume, you can have up
to 32 different physical extents (read LUNs) that comprise a single VMFS vol-
ume. Using 2nd grade math we can quickly determine that the physical maximum
for a single VMFS volume is 64TB when using the maximum number of maxi-
mum sized extents.

Differences between VMFS2 and VMFS3

Outside of the primary difference of VMFS-2 being a flat file system and
VMFS-3 having an actual directory structure the major differences between the
file systems have to do with size and reliability. Nearly every configurable
maximum is increased in VMFS-3. In addition, the introduction of journaling
which provides better data consistency recovery from system crashes.

A final item to note that will become quickly evident to ESX users is that the
canonical VMHBA names for LUNs and volumes have been replaced with

 162

UUID signatures for volume management. In VMFS-2 there were issues where
the same LUNs were given different IDs across different hosts. VMware ESX
3 will now use the unique UUIDs for management of these volumes.

While ESX 3 does have the capability to load and read VMFS-2 volumes, it
cannot perform write operations, thus making it impossible to run VMFS-2
based virtual machines on ESX 3. The VMFS-2 functionality is provided solely
to allow ESX 2 to ESX 3 upgrades.

Now you understand the basics and limitations of VMFS. It’s a high perform-
ance file system made to handle a small number of large files. Now it’s time to
get down into the how’s and why’s of VMFS. Let’s take a look at what knowing
all this information allows us to actually do.

Naming Standards for VMFS Volumes

One thing that will become quickly apparent, if it hasn’t already, is that we are
big fans of incorporating naming standards into any user namable component
within the virtual infrastructure. When creating a naming standard for your
VMFS volumes you should use something that makes it quickly identifiable not
only to you as an ESX administrator, but also to a storage administrator. Nam-
ing something “VMFS0”, “VMFS1”, etc does not make troubleshooting easy.
Use something a little more conventional such as “cx7_SAN_13”, which would
indicate I am using an EMC CX700 storage array and my VMFS volume is on a
SAN LUN with an ID of 13. The same works for iSCSI as well. Take
“fas250_iSCSI_25” as example of me using a NetApp FAS250 iSCSI LUN with
an ID of 25.

Since NFS is a network file system based solution, a slightly different approach
is needed to identify an NFS mount. Assuming all ESX mount points are in the
same root directory on the NFS server, I use the simple naming convention of
“Servername_MountPoint”. This allows me to quickly and easily identify the
NFS server or device and the exact storage mount point I am using to store my
virtual machine data.

 163

Default File and Directory Structure

We’ve stated earlier that unlike previous versions of the VMFS file system,
VMFS-3 is no longer a flat file system and contains an actual directory structure.
As we will find out later in this chapter, this is a key feature that is required for
the proper operation of VMware HA. The root path for all VMFS volumes on
an ESX host is /vmfs/volumes/. Each VMFS volume is assigned a unique
UUID and has a listing under this root path. If you set up a friendly name as
instructed in the “Naming Standards for VMFS Volumes” section, you will also
see a symbolic link that points your friendly name back to the ugly UUID.

Figure 5- 2: Directory Structure

Directories

Each virtual machine or template that is created in the infrastructure is given its
own directory on the VMFS volume that was specified as the virtual machine’s
datastore during the creation of the virtual machine. The directory name will
match that of the virtual machine specified during configuration. If multiple
VMDK files are specified after the initial creation of the virtual machine that
span across multiple LUNs, there will be a virtual machine directory on each
VMFS volume that contains a VMDK file. This model allows for easy tracking
of your virtual machine’s configuration information, even if it does span multi-
ple volumes within the infrastructure. By default, there are no other subdirecto-
ries contained inside the virtual machine’s configuration directory.

 164

Files

The VMDK files aren’t the only objects contained in these virtual machine di-
rectories, there are several files that are critical to the operation of the virtual
machine. Since most of these files have been touched on in other areas of this
book, I will only lightly discuss them here.

VMX – The virtual machine configuration file that specifies the detailed con-
figurations of CPU Count, Memory, Disk locations, and other critical options
for the virtual machine

NVRAM – Contains the BIOS configuration information for the virtual ma-
chine

LOG – Contains the log information of the virtual machine

VSWP – The VMkernel swap file that is used for the virtual machine when a
host has over allocated its memory resources

VMSD – Contains information about the location and path to the VSNP files
when using snapshots

VSNP – A snapshot file indicating the VMDK file is in a non-persistent mode
and that changes are being written to this snapshot file

VMDK Disk Format
In order to create and assign hard drives to your virtual machines when using
centralized VMFS storage you will need to leverage VMDK files. A VMDK file
represents a physical hard drive device that is presented to your guest operating
system. When connecting a new VMDK file to a virtual machine, the operating
system sees it as a non-partitioned physical drive. This drive can be partitioned
and formatted using a variety of file systems including NTFS and ext3. Up to 60
VMDK files can be assigned to any guest operating system, allowing for quite a
bit of flexibility in creating a partitioning scheme in the guest operating system.
When sizing a VMDK file, ESX has a limitation of 2 TB per VMDK.

 165

A typical VMDK file consists of two files on the VMFS file system. The first is
the header file, which contains critical information about the disk such as its size
and geometry. It is typically a very small file and can be read in any plain text
editor. The second file is the flat file which contains your actual virtual machine
data. The flat file will always report as being the same size as the size of the
hard drive you specified when building the virtual machine. ESX is unlike
Workstation and Server in the fact that when a VMDK file is created you have
no choice but to assign all disk space at the time of creation. This keeps the file
system clean and sequential for VMDK file access. There is one exception to
this rule and we will discuss that when we talk about thin provisioning VMDK
files later in this section.

Creating VMDKs with Different Provisioning Methods

There are actually four different methods of provisioning VMDK files (outside
of Raw Device Mappings, which we discuss later) in ESX server. Each of them
provides unique functionality around creation time, access speed, and disk space
allocation.

Zeroed Thick

Creating a zeroed thick VMDK file is the default action when creating a new
VMDK file from the Virtual Infrastructure Client or with the “vmkfstools –c”
command. At creation time, a zeroed thick VMDK file is completely allocated
at creation time, but existing data blocks are not wiped clean immediately.
When a virtual machine attempts to read data on one of these data blocks for
the first time, the block is filled with random data. This means that the VMDK
file can be very quickly created, and the data that may have been on the disk
prior to being formatted with VMFS cannot be read by a guest operating sys-
tem. Since this data must be written to the disk before it can be read by the
guest, there is a small performance hit the first time the data block is accessed.
This action only occurs once per data block, so if the same block were to be
changed a second time, it would not need to be wiped clean.

Eager Zeroed Thick

Creating an eager zeroed thick VMDK file can only be done with the
vmkfstools command and specifying the “-d eager zeroed thick” option. The
difference between eager zeroed thick and zeroed thick lies in the fact that an

 166

eager zeroed thick VMDK file will have all data blocks zeroed out when it is
created. This means the VMDK file will take longer to create than a zeroed
thick disk. The exact amount of time is dependent on the size of the disk and
the speed of the underlying storage infrastructure. Creating an eager zeroed
thick VMDK file will not incur any performance penalty the first time a data
block is accessed, as the data has already been zeroed out. If creating a VMDK
file for a transactional system such as a database, messaging or file server, it
makes sense to manually create your VMDK file with this option from the serv-
ice console.

Thick

I’ll start by stating that using this creation method is a major security risk and it
should not ever be used. Instead of just calling it quits there and saving myself
some writing, I’ll actually explain why such a bold statement is necessary. When
you create a thick VMDK file, it is done in the same fashion as creating a ze-
roedthick file. All space is allocated when the file is created, but no data is
wiped clean. The downside is that it is not wiped clean the first time it is ac-
cessed either. Any data that may exist in the data blocks that make up the
VMDK file can quite easily be accessed through easy to write code or easy to
find undelete utilities. If you care about data integrity in your environment
(typically Sarbanes Oxley or HIPPA will dictate that for you), never ever create
a thick VMDK file.

Thin

A thin VMDK file is a new and unique method in an ESX environment. It is
the default creation option if a VMDK file is created on an NFS volume. What
it means is that data blocks are allocated and zeroed out as they are used, mak-
ing it the most efficient in regards to storage space utilization. The down side
of this becomes evident if you have multiple thin VMDK files on the same NFS
or VMFS volume through fragmentation. Since data blocks are only assigned
when they are used, if multiple files are being created, moved, etc in the same
volume, your performance is going to suffer because these files will become
extremely fragmented extremely quickly. This performance impact isn’t as sig-
nificant in an NFS environment, as the block data is abstracted from the ESX
host, but it is recommended that you not use thin provisioning of a VMDK file
when using VMFS volumes on your ESX host.

 167

Snapshots

Snapshots are not an entirely new component in ESX. Previous versions used a
very simplistic REDO file method to create a point in time snapshot of a virtual
machine. The legacy REDO files were only linear and there was a maximum
limit of two concurrent REDO files for any given VMDK file. The new snap-
shot format is identical to that used in VMware Workstation and VMware
server. When using snapshot files you can not only create a linear checkpoint
structure, but can also create complex parent-child relationships to provide sig-
nificant flexibility around various recovery or testing points. Snapshots are
taken at a virtual machine level, whereas REDO files were taken at a VMDK
level. This means that when a snapshot of a virtual machine is created, all com-
patible disks are captured in that snapshot.

A single virtual machine can contain up to 32 levels of snapshots, which should
provide for even the most complex configurations of a virtual machine. A typi-
cal snapshot consists of three major components:

Guest Memory State (Optional) – Performs a memory dump to disk of a run-
ning virtual machine so it may be recovered to the exact point and power state
at the time the snapshot was taken. If guest memory is not included with the
snapshot, the server will boot from scratch in a crash consistent state.

Guest Configuration State – Captures the configuration of the virtual machine
hardware such as number of processors, assigned memory, virtual hard drive
configuration, etc.

Guest Disk State – Cuts off disk access to the parent disk and creates a snap-
shot disk file (child). Any new file system changes are written to the snapshot
file and the parent is not modified until the child snapshot is deleted or the user
reverts back to the checkpoint.

Linear Snapshots

Linear snapshots are the easiest to visualize and manage in a virtual infrastruc-
ture. A linear snapshot configuration consists of the same virtual machine with
several point-in-time checkpoints that do not branch in different directions.
Each snapshot has one parent image and one child image, with the exception of

 168

the primary VMDK file not having a parent and the final snapshot not having a
child.

Figure 5- 3: Linear Snapshots

The key to applying a name to a snapshot is to describe the activity that oc-
curred up to the point in time that the snapshot was taken. As an example from
the image above, the database was installed between the time after Snapshot 1
was created and Snapshot 2 was taken. If you want to revert back to a point in
time and install a different database platform, you would need to revert back to
Snapshot 1, which invalidates any of the data that occurred from that point
forward in a linear format. This is where nested snapshots come into play.

Nested Snapshots

Nested snapshots function on the premise that a parent VMDK can have more
than one child, but a child can still have only one parent. This allows multiple
configuration branches to be formed for more complex configuration and test
scenarios.

 169

Figure 5- 4: Nested Snapshots

In this configuration we can see that a new branch has been made by creating a
second child snapshot to the Snapshot 1 parent. This allows a tester to more
easily switch back and forth between not only different database platforms, but
also the application and user data that was added to that platform. By simply
flipping between Snapshot 5 and Snapshot 7, the user can completely change
their database environment to perform testing against otherwise identical con-
figurations.

We can take a look at one final example to show how easily a nested snapshot
infrastructure can get in what most would consider a typical test scenario for an
application developer.

 170

Figure 5- 5: Advanced Nested Snapshots

As you can see here, we have not only nested our database with two different
versions like we did in our previous example, but we have also introduced two
versions of our application. By changing between Snapshots 6, 7, 10, and 11, a
user can very easily test four unique scenarios quickly and easily on an enterprise
ESX infrastructure.

When using Snapshots, you want to be extremely conscious of the amount of
free space you have in your VMFS volumes. Snapshots constantly grow as data
inside the virtual machine changes. Devastating results have been known to
occur if a VMFS file system is filled to its maximum capacity and snapshots are
being used on virtual machines. If you intend to use snapshots for activities
such as backup or creating multiple checkpoints, make sure you plan a sufficient
amount of free space into your VMFS volumes to support the rate of change in
your virtual machines.

Independent Mode Disks

There may be a situation in which you would like to exclude a particular disk
from a server snapshot. This is typically in a case where you only want to cap-
ture the base operating system for recovery purposes and do not want to cap-
ture a large data volume. You can specify individual VMDK files that you wish

 171

to exclude by changing them to Independent Mode VMDK files using the Vir-
tual Infrastructure Client.

Persistent and Non Persistent VMDK Files

When using Independent Mode Disks, you must specify how the data will actu-
ally be written to your VMDK files. There are two access modes that you can
set on a per VMDK file basis.

Persistent Mode - This is the default access mode for all newly-created
VMDK files. VMDKs in this configuration behave exactly like a drive on a
physical machine would. Once you make a change to the file system, its perma-
nently written to the VMDK file. It’s recommended that unless there is a spe-
cific need to use a different access mode, that persistent be used, as it provides
the best overall disk performance.

Nonpersistent Mode - VMDK files configured in a nonpersistent mode dis-
card all changes made to the file system since the point in time in which the
access mode was changed to nonpersistent. When the virtual machine is pow-
ered off (not rebooted), any changes that were made to the VMDK are ignored.
This is handy in kiosk situations where multiple people have access to a ma-
chine through some form of remote connectivity.

If someone were to delete key files, you can instantly return the system to its
original state. Another situation in which nonpersistent mode may be conven-
ient is for training classrooms. Several students may be given their own virtual
machines as their lab to configure a specific system. They can install applica-
tions and reboot several times. At the end of the day, a simple power off of the
VM will place the machines back to their original state.

When using nonpersistent access mode, it’s best to completely configure the
server then change the disk access mode to nonpersistent. This ensures you al-
ways go back to the expected configuration on the VMDK file.

 172

Raw Device Mappings (RDMs)

ESX 3 provides a way to map LUNs directly to a virtual machine without hav-
ing to mess around with VMFS partitions and VMDK files. This is done by
configuring a disk mapping file on an existing VMFS partition that each ESX
host in a cluster has access to. When using disk mapping files, you are basically
using a VMDK type file stored on a VMFS volume that instructs the VMkernel
that the actual data is stored directly on a SAN LUN. The virtual machine that
you want to leverage the Raw LUN will actually point to the mapping file as the
location of its virtual hard drive.

The mapping file manages the metadata for the LUN that the virtual machine
uses as its disk. The metadata is basically the locking information for the LUN
and the physical location of the LUN. Notice here that we say LUN and not
partition. Disk mapping files only support mapping directly to an entire LUN
and not a partition that exists on a LUN.

Figure 5- 6: RDM

When using an RDM it is important to note that the mapping file is used to
instruct the VMkernel where to write the data, not as a continuous proxy
mechanism to the Raw LUN itself. When access to a disk is requested, the

 173

VMkernel reads the mapping file, performs the necessary locking and reads the
physical location of the Raw LUN. Subsequent I/O activity is then written di-
rectly to the Raw LUN itself without having to leverage the mapping file again
(until the virtual machine is powered off and the disk can be unlocked and re-
leased).

The virtual machine itself will actually treat the Raw LUN as a regular physical
disk and it will be partitioned directly with an NTFS or EXT file system, with-
out having to use VMFS and VMDK files on the LUN itself. The advantage of
using the mapping file is that regardless of which type of RDM you configure,
you will still have the capability to perform VMotion, DRS, and HA activities of
virtual machines with RDMs configured.

There are two different access modes for RDM disks inside VMware ESX, each
with unique characteristics: Virtual and Physical.

Virtual RDM

When configuring a virtual mode RDM, the access to the RAW LUN is fully
virtualized by the VMkernel. You have the exact same capabilities that you
would if you were using a standard VMDK file such as the ability to add redo
logs, and import and export the contents of the disk just like a normal VM disk
file. Inside the virtual machine, you would see this disk just as you would a
typical VMDK file as well. It would appear in Device Manager as a VMware
SCSI disk device.

Virtual mode RDMs are often used for very large volumes that already exist and
it doesn’t make sense to migrate data over to a VMDK file. This is typically
found on File, Database, or Messaging servers. By keeping the VMDK in vir-
tual mode, you are afforded with the benefits of being able to add snapshots to
your virtual machines and back them up by taking advantage of virtualization
specific backup software.

Physical RDM

In physical mode, the virtualization of the SCSI device is limited. As a matter of
fact, all SCSI commands from the virtual machine are sent to the physical de-
vice with the exception of the Report LUNs command. This mode is often

 174

used when you are required to run SAN management agents within the virtual
machine that require lower level access to the physical device. When using
physical mode RDMs, the disks are seen within the operating system with their
physical characteristics.

Another scenario in which physical mode RDMs are typically used are when
physical to virtual or virtual to virtual cluster across hosts is required. Physical
mode RDMs remove SCSI locking from the list of responsibilities of the
VMkernel and passes it on to the guest operating system, which is a requirement
for using MSCS in a virtual environment.

It is very important to note that since near nothing is virtualized, and SCSI
locking is not managed by the VMkernel, it is not possible to use VMware snap-
shots when using a physical RDM. This is the trade off you have to give when
you need lower level access to your physical disks.

When to Use RDMs

We have already highlighted several instances of when RDMs should be lever-
aged. One thing we want to make clear is that RDMs should NOT be used as a
means to significantly increase performance of your virtual machine. Testing
has shown that there is little to no performance gain by using an RDM over a
VMDK file on a VMFS partition. In addition, there is no performance gain
when choosing to use a virtual or physical mode RDM. The main reason you
would want to use an RDM is for flexibility. If you need to move a LUN back
to a physical host, whether it is for performance or other reasons, it is MUCH
easier to do if you can simply rezone an existing LUN that has a standard file
system on it.

• Allows MSCS clustering involving a virtual machine

• Eases data migrations of large data volumes that already exist in a
virtualization project

• Provides the flexibility to move data volumes quickly from a virtual
machine back to physical (Sorry VMware, it happens)

• Allows low level access to the disks inside a virtual machine (Typi-
cally used in conjunction with SAN snapshot software)

 175

• Increases the amount of micro management of storage configura-
tions inside the virtual infrastructure

• Must keep track of physical and virtual RDMs to know which ca-
pabilities are available to specific virtual machines.

• Cannot use VMware snapshots when using physical mode RDMs

Storage Layout and Design

The gritty details of ESX storage infrastructures come out when it is time to
take all of the previous concepts and actually apply them into usable configura-
tions. This is where VMware consultants and SAN engineers truly make their
money.

Sizing

Determining the number and size of LUNs required in your environment is one
of the most important things that you will do when dealing with your SAN con-
figuration for ESX. The first thing you have to do when determining the num-
ber and size of LUNs you need is to estimate how much writable disk space you
will present to the ESX servers in total (i.e., how much space are your VMDK
files going to take up plus room for configuration files and growth). And the
second thing is how you are going to break these up into usable LUNs.

Remember, with ESX 3 you are no longer simply storing static VMDK files on
a virtual machine, there are other files you need to consider as well such as con-
figuration and log files, but most importantly virtual machine swap files. By
default, every virtual machine that gets created has a default memory reservation
of Zero, meaning ESX will not set aside any dedicated memory resources. To
compensate for this, a VSWP file is created that is equal to the amount of
memory assigned to the virtual machine. If the system becomes over-allocated
in regards to memory resources, it will begin to swap virtual machines with a
lower number of shares to their swap file, effectively slowing down memory
access for that virtual machine.

This, of course, gets added into the virtual machine configuration directory and
must be counted towards the “used” space for your virtual machine. There are

 176

several things we can do to help limit or eliminate this requirement, but it does
require reconfiguration (and a power off and power on) of existing virtual ma-
chines. If the changes are applied to a virtual machine template, each newly
deployed virtual machine will maintain the settings assuming the amount of as-
signed memory doesn’t change.

Leave the default value and take the storage utilization hit. When in doubt, just
leave the default values. They are called defaults for a reason.

Increase the memory reservation to be 50% of the virtual machines memory
resources. This limits, but does not eliminate, the ESX host’s capability to
overallocate memory. At best, you can achieve an overallocation of 50% of
your memory resources, which is still a VERY high number, and it doesn’t use
as much storage for your VSWP files. This is the overall recommended option,
but does add slight management addition to your virtual machine deployment
process.

Increase the memory reservation to be 100% of the virtual machines memory
resource. This will eliminate any disk allocation to the VSWP file but it will not
be possible to overallocate memory to your ESX hosts. The ability to overallo-
cate resources is one of ESX stronger selling points so this option should be
avoided.

Create a separate centralized VMFS volume on low cost storage and reconfigure
each virtual machine to place their VSWP file on this alternate location. This
option is a management nightmare and should just be avoided. You don’t want
to have to deal with planning more storage layout than you need to.

In addition to simply sizing the LUNs, additional thought should go into the
workload characteristics of your virtual machines and how one virtual machine
could potentially impact another. This will come into play when actually deter-
mining the layout of your virtual machines onto the allocated LUNs.

There are four schools of thought around how one would typically size their
LUNs for virtual machine use:

 177

Small Number of Larger Volumes

Using a small number of larger volumes is the easiest solution to manage and is
probably the most common method found in a vast majority of ESX infrastruc-
tures. Using this method, LUNs that are capable of handing 12-15 virtual ma-
chines are created. A vast majority of the time it is found that the sweet spot
for this configuration is within the range of 400-500 GB LUNs. If we use a
typical example we see quite often of a 10 host ESX cluster of 4-way dual core
systems, we can assume we can safely run 30 virtual machines per host. 300
VMs / 15 VMs per LUN = 20 LUNs. This is a very manageable number of
LUNs within a virtual infrastructure. The one downside to using larger LUN
sizes is often times you will find that you waste a bit more space than if you use
a larger number of smaller LUNs.

• Easy configuration and management model

• Allows for large VMDK file configurations (100’s of GBs)

• Typically find more wasted space on LUNs than with other models

• Increased bandwidth to each LUN limits load balancing capabilities

Large Number of Smaller Volumes

In this scenario a user may determine that they would like to have better control
over their virtual machine VMDK configurations if they created smaller LUNs
that contained the proper amount of space to store approximately 5 virtual ma-
chines. These LUNs would typically be sized somewhere between 100-200 GB.
When using this methodology an end user needs to consider the sheer amount
of LUNs that may be attached to a single ESX host while remembering that
every host in the cluster needs to see every LUN that contains a virtual machine
for the purposes of VMotion, DRS, and HA. Taking our common configura-
tion of a 10 host cluster of 4-way dual core systems, we can assume we can run
safely run about 30 virtual machines per host. 300 VMs / 5 VMs per LUN =
60 LUNs. All of a sudden the ESX administrators aren’t simply doing virtual-
ization management, but storage management as well.

• Better control of utilized and unutilized space

 178

• Lower bandwidth to each LUN which maximizes load balancing
capabilities

• There are instances where large VMDK files will be required,
which minimizes the overall effectiveness of the virtual machines

• Extra management by the ESX administrator to track and manage
large amount of LUNs

The Hybrid Solution

Of course we are never satisfied with providing a solution that is either on one
extreme or the other. A common practice that we find, and will often recom-
mend, is the use of a tiered architecture in which several LUNs of various sizes
are created and assigned to the virtual infrastructure. This solution provides a
lot of flexibility by providing support for large VMDK files, while still maintain-
ing flexibility around utilized/free space control and manageability. Without
actually breaking out the Advantages/Disadvantages of this solution, assume it
takes the best of both configurations and provides a solid solution that is being
used at an increasing rate across many organizations.

Use RDMs Wherever Possible

There are some organizations that want to have the absolute maximum amount
of flexibility at the expense of creating a management nightmare for their
VMware administrators. In this scenario a few large LUNs are provided for
storing mapping files and virtual machine snapshot files. The rest of the LUNs
are customized on a per virtual machine basis and assigned as RDMs inside
ESX. There is no wasted space, as each LUN is customized for the virtual ma-
chine it is assigned to and is configured with a native operating system partition.
Regardless of which type of RDM is being used, VMotion, DRS and HA func-
tionality will still be supported. For systems that do not require low level disk
access from the virtual machine, it is also possible to add snapshots for backup
and checkpoint purposes.

A MAJOR consideration when configuring this type of environment lies in the
amount of LUNs that must be assigned to each host in the cluster. Let’s take
our traditional example with one small hitch that was previously irrelevant. We
have our 10 host ESX cluster of 4-way dual core systems, and we can assume
we can safely run 30 virtual machines per host. Our added hitch here is that

 179

each virtual machine has an operating system LUN and a data LUN to maxi-
mize data throughput down multiple paths for the single VM. Doing some
quick math we determine that 300 VMs X 2 LUNs per VM = 600 LUNs. If we
go back to the very beginning of this chapter we remember that we can only
assign 256 LUNs to any given ESX host. In this specific example we either
need to drastically reduce the number of virtual machines per host (which is a
bad idea to leave idle cycles in a consolidation environment), or reduce the size
of our cluster, which increases management and limits our failover and HA op-
tions for those hosts and virtual machines.

One thing that drives us absolutely crazy is seeing people assign one LUN per
virtual machine logical hard drive and configuring it with VMFS and placing a
VMDK file that fills up the entire LUN. It simply makes no sense. If you are
going to do this you eliminate your capability to create a snapshot and are much
better off using an RDM.

Needless to say, using RDMs should be intermixed in with a hybrid disk sizing
solution and only used if there is a specific need. Remember, RDMs do not
provide any noticeable performance increase in a properly configured environ-
ment.

Hosts per LUN

VMware has a published maximum of 32 paths to any given volume. If you
take a look at their recommended maximum of 32 hosts in a cluster, you had
better be using single path LUNs, which is not recommend as it provides no
redundancy for the most critical aspect of your virtual infrastructure. We as-
sume every ESX host connecting to fiber based or iSCSI SANs will have at least
two paths, making the absolute maximum number of hosts in a cluster 16. We
even go a few hosts lower in our practical configurations from Chapter 4 where
we recommend no more than 10-12 hosts in a single cluster. At most, this
would provide a very safe value of 20-24 paths communicating to a single LUN
at any given point in time.

LUNs per host

VMware has a hard limit of 255 LUNs that can be assigned to a host at any
given time. Using our sizing suggestions from above you should be hard

 180

pressed to have to manage any more than 40-45 LUNs on any given host of a
cluster in a worst case scenario. This is still a fairly manageable number and
provides some good opportunities for properly balancing LUNs down multiple
paths to the storage infrastructure. We find that having 20-25 LUNs assigned
to a single host is actually the norm.

Template Locations

Virtual machine template storage is a unique scenario in which it is worth build-
ing and configuring a lightweight NFS server simply for that purpose. Every
Linux distribution under the sun has NFS included, and Windows has even
started distributing an NFS server in Windows 2003 R2 or other versions of
Windows with their Windows Services for UNIX download. With the amount
of usage this particular volume will receive, it does not need to be a costly or
high performance solution, as long as it stays running so virtual machines can be
properly deployed.

Load Balancing and Failover

The various storage configurations within ESX each require unique failover
considerations. Carefully following the guidelines laid out in this section will
ensure the critical backend storage infrastructure is as redundant as possible for
your virtual infrastructure.

Fiber SAN and iSCSI Hardware Initiator

For redundancy purposes it is recommended that at least two fiber HBAs be
installed in an ESX host. While the VMkernel itself does not provide any load
balancing down multiple storage paths, through creative and proper planning
we can achieve manual load balancing on a per LUN basis. Fortunately, the
VMkernel does provide efficient failover capability if the same LUN is seen
down multiple paths.

 181

Figure 5- 7: Multipathing

As you can see in the figure we have a simple configuration consisting of a sin-
gle host with two HBAs communicating with two LUNs. By default ESX has
configured a different HBA as the primary path for each LUN. This provides
our load balancing method for our storage infrastructure. While this is not the
most efficient load balancing in the world, it is the best we can currently get in
our virtual infrastructure. If either primary path were to fail anywhere in the
SAN infrastructure, the failover path would kick in within about 45-60 seconds
and take over storage communication for the required LUN.

VMware provides two different internal methods to provide load balancing
down multiple paths of the storage Infrastructure: Fixed/Preferred Path and
Most Recently Used (MRU).

The MRU option is the default configuration that is used with Active/Passive
storage devices, such as small arrays that have dual controllers in an active pas-
sive configuration. These are devices that maintain a single active path to the
exposed disk and failover in the event of a component failure. The
Fixed/Preferred Path option is the default for Storage that is configured for
Active/Active accessibility. Generally higher-end SANs will support an ac-
tive/active configuration. You will need to verify the configuration your SAN

 182

supports by reviewing the VMware documentation or working with your SAN
vendor on the proper setting.

In an MRU configuration, the HBA being used to access a specific LUN will be
used until it is unavailable. In the event of a failure, either in the card, the con-
nection, or the storage processor level, ESX will automatically failover to the
other HBA and begin using it for connectivity to the LUN. If the first
card/path comes back online, the path currently being used will not change. As
the name states, ESX will continue to use the path that it has failed over to
since it is the ‘Most Recently Used’. The storage array itself can often be con-
figured to specify which of the available paths between the ESX host and the
SAN controller is the "preferred path", but this functionality is not available in
ESX when using the MRU option.

• Automatically configured to an available path

• Very little configuration required

• Possibility that all VMs will run over a single HBA

• Since the first HBA in the system is scanned first, this path is likely
to be found and used first by the system for all LUNs

Contrast this to the Fixed/Preferred Path configuration option. In this configu-
ration, the Preferred Path is used whenever it is available. So if a connection is
lost, and the ESX Server fails over to another HBA/Path, it will only use that
path until the preferred path becomes available again. This is used in Ac-
tive/Active storage arrays in which any of the available paths can be used for
storage communication at any point in time.

In an Active/Active SAN it is possible to assign alternate preferred paths on a
per LUN basis. It is worth the extra time and configuration it takes to continu-
ously analyze the balance of communication down the multiple paths of an ESX
host and adjust it when necessary by changing the preferred path of key LUNs
to equalize the path utilization. In Active/Active configurations this rebalanc-
ing is done through the Virtual Infrastructure Client and does not impact the
availability or performance of the virtual infrastructure. Naturally, it should be
documented and processed through a change control just in case you fat finger

 183

something and end up disabling a path and crippling your disk I/O by jamming
it all down a single path.

• Allows you to ‘manually’ balance your LUNs between HBAs.

• System will automatically return to your original configuration
when the path is returned to an operational state.

• Requires a little manual setup initially to ensure LUNs are split
evenly between HBAs.

So what happens during a failure?

When an active path to a SAN disk is lost, the I/O from the virtual machines to
their VMDK files will freeze for approximately 30-45 seconds. This is the ap-
proximate amount of time it will take for the SAN driver to determine that the
link is down and initiate failover. During this time, the virtual machines using
the SAN may seem to freeze, and any operations on the /vmfs directory may
appear to hang. Once the failover occurs, I/O requests that have queued up will
then be processed and the virtual machines will begin to function normally.

If all connections to the storage device are not working (assume a disastrous
loss or a single path configuration), then the VM’s will begin to encounter I/O
errors on their virtual disks.

iSCSI Software Initiator and NFS

Load balancing iSCSI software initiated LUNs and NFS volumes is completely
controlled by the standard network high availability capabilities of the VMker-
nel. The process in which load balancing and failover are performed for these
storage types are entirely controlled by the configuration of the virtual switch
responsible for managing the communication to the storage systems. You will
have an immediate understanding of this process upon completion of the next
chapter, in which we discuss the networking aspects of the virtual infrastructure.

 184

Note on Windows Guests

When using Windows Server OS’s in your VMs, you may want to adjust the
standard disk time out for disk access. During the failover of an HBA, the de-
fault timeout in a Windows guest may cause issues within the guest OS that is
used to having extremely responsive disks. For the Windows 2000 and Win-
dows Server 2003 guest operating systems, you should increase the disk timeout
value in the registry so that Windows will not be extensively disrupted during
failover. The registry value can be found at the following location:

HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Disk

The entry you wish to change, or add if it does not exist, is the TimeOutValue.
Set the data to x03c hex or 60 decimal. This will configure the Windows Oper-
ating system to wait at least 60 seconds for disk operations to finish before re-
porting errors, which will likely consist of a wonderful blue screen.

Conclusion

As you can see, there are a lot of critical considerations and configurations that
are required for a proper storage infrastructure for your virtual environment.
With the introduction of network based storage platforms the entire process is
complicated by the fact that we are not simply dealing with a centralized storage
infrastructure, but we need to consider the importance and impact of the net-
work infrastructure as well. We did not dig too deeply into these network con-
figurations, but not to worry, our next chapter does plenty of that for us.

	Cover
	B1_CH5

