

 98

Chapter 4 - VirtualCenter and Cluster
Design

In this chapter, we will look at ESX design options from a managed cluster per-
spective in addition to VirtualCenter (as a service) and its alternatives for im-
plementation. Also, we will wander around the VMware licensing model and
some of its design considerations.

Licensing
While no one really likes to talk licensing, it is a must. VMware (like any other
software vendor) wants to get paid for their intellectual property, and thus we
need to license the servers. Let’s look at what components need to be licensed
and how they are licensed, then we’ll review the licensing architecture used in
VI3.

Licensed Components

One thing about being in IT (that no one ever mentioned when I got into it), is
that licensing, not to mention the legalities of it, is one of the biggest pain in the
butt issues I deal with all the time. Every time a vendor comes out with a fea-
ture, you get a new price and a new license model. Or, you have to ask how
things are licensed (like per server vs. per processor, and does server mean a
virtual or physical instance, etc…?). While all the license models in the world are
a little out of scope here, and quite frankly, impossible to write about since MS
and other vendors change their stance about once a quarter, we will try to walk
you through an ESX environment’s licensed components and what they mean
to you. Below we have an ESX server environment using almost every possible
licensed feature for ESX.

 99

Figure 4- 1: VirtualCenter Licensing

The setup in the previous image shows two different ESX environments. The
ESX host on the left of the image is a standalone host, showing a basic “Starter
Edition” configuration. You get a basic ESX host, the ability to create VM’s and
use local VMFS volumes and that is about it. These servers can have up to 4
processors (you pay per socket) and 8 GBs of RAM. There is no limit on the
number of VM’s, but you are limited in reality by the amount of RAM to about
16 VM’s. In addition management of these servers is not centralized. They are
each managed individually, with no centralized VirtualCenter Server.

Moving left to right in the image we then see a VirtualCenter server managing
an environment of multiple ESX servers. When moving up to Standard Edition
for the ESX host you get additional storage options like iSCSI and Fiber Chan-
nel based SAN. In addition, your VM’s can now use Virtual SMP (dual and
quad processor), and the limitations on the number of processors and amount
of memory for the host has been removed. This is a fully functional host, but
not a fully functional environment, yet.

You’ll then notice that the “Standard” servers are configured in a cluster using
advanced features of VirtualCenter like Distributed Resource Scheduling (DRS),
High Availability Services (HA), and VMotion. Each of these is an “add-in”
license to enable a specific functionality. These licenses are in addition to the
basic VirtualCenter agent license, which allows the Standard Edition ESX server
to be managed by a VirtualCenter agent. Confused yet? Don’t be, while you can
buy these piece meal, often times you will either purchase a Starter, a Standard,
or VI 3 Enterprise (what used to be call an Infrastructure Node license) that

 100

includes all of the optional components, even if you don’t need them all. The
reason to get the infrastructure node is simple, price. If you need one or two of
the add-ins, it is often about the same cost as getting the node license and much
simpler from a quoting and purchasing/upgrading perspective.

Finally, on the right hand side you will see a VMware Consolidated Backup
(VCB). This is another feature (that you can get with the VI 3 Enterprise li-
cense) that is licensed Per ESX server and allows for enhanced backups of
VM’s.

So which one do you need? 90% of you who are reading this book will need
the infrastructure node licenses. But for a short who’s who in the zoo, we break
it down like this:

Starter Edition: This is used by one or two server shops that do not need central
management, work load balancing of VM’s, or high availability. Generally used
when testing the waters.

Standard Edition: This is used by almost everyone and managed in almost every
environment by a VirtualCenter Server. Used by those that may or may not
need the DRS or HA services but do need a central mgmt console.

VI 3 Enterprise (Formerly Infrastructure node): This is used by a majority of envi-
ronments with anything more than a couple of servers. These license packs al-
low you to take advantage of automatic VM recovery (HA services), give you
the VirtualCenter mgmt license, along with DRS and VCB.

How licensed components are licensed…

ESX Host licenses are simple; they are licensed by processor socket (NOT
CORE). As of this writing the ESX two processor licenses is good for a dual
processor quad core server, and if you wish to support a 4 processor server (re-
gardless of cores per socket) then you need to purchase two dual processor li-
censes. The amount of processor throughput you are getting for your dollar in
multi-core systems is great. I expect at some point for this to change, but right
now you should get it while the getting is good…

 101

For other components it’s a little trickier. The VirtualCenter Agent component
along with VMotion, DRS, and HA are per host features, but generally work
out to a per processor cost. What I mean by this is that an Infrastructure node
license for a dual processor system is maybe $5,000 US. But a quad processor
system with the same feature is $10,000 US. So while the HA, or DRS features
are pretty much processor agnostic and really are VM or Host-based, their pric-
ing is very dependent on the number of processors (and therefore the number
of VM’s) you have. VCB, on the other hand is licensed by host (unless you
roll it into the infrastructure node). In either case, it’s still a per host license;
only, it’s included with the inf. node pack so we get back to the paying by the
proc concept.

VirtualCenter is essentially licensed by the number of agents (read ESX servers)
you have. These again tie back to the number of processors as a Quad is a dif-
ferent cost than a dual proc.

The basics of licensing with ESX is that everything is moving to a per processor
model. So the sweet point now is that multi-core processors are offering more
processing time per dollar since VMware is still charging for licenses by the
number of sockets and not cores. Best bet is for you to determine the number
of processors you are going to use, then get quotes based on that. Too often
people get mixed up in the “I have 6 dual, dual cores, or 4 quad proc dual cores,
and confuse themselves and the sales guys. Just count up proc sockets, and tell
them what features you want.

Choosing a Licensing Model
Licensing in ESX 3.0 is essentially a file-based license. In the ESX 2.x era, ad-
ministrators would key in a long product license code into the web interface for
each ESX server they managed. Then, if the server were managed by Virtual-
Center, and you wanted to use features like VMotion, you keyed in licenses (ba-
sically from a text file) to enable VC management and advanced features.

The file-based license architecture used in ESX 3.0 changed all of this. ESX
licensing now has two modes: ‘Host based’ licenses (a file that resides on the
ESX server) and Server-based licenses (a file that is hosted on a separate Win-
dows server running the VMware license services). The concept is this, you (as
a VMware customer that has purchased licenses) can go to their website and

 102

generate license files. The format of these files is the basic format used by
FlexNet (formerly FlexLM) licensing. These license files can contain all of your
licensed functionality (VMotion, DRS, how many processors, etc…) and deter-
mine where the license files are stored, on the host or on a centralized Windows
Server running the FlexNet licensing services. It should be noted here, that
when you generate the license file you must choose between the host based and
server based, they can not be interchanged.

Essentially you have two options when it comes to how to maintain / host your
licenses. You have the ability to host them on a central server for all of your
hosts, or you can have an individual license file for each and every host in your
environment.

VMware (in their documentation) allows for a 3rd model where you would store
the VirtualCenter license file on the license server then also have each individual
ESX server host its own license. We see no need for this except in cases of up-
grades (like during the transition from a single server environment with no Vir-
tualCenter) or some weird political issue within your organization that X
business unit owns a server license, but corporate IT owns the VMotion and
Virtual Center license etc… If the latter is the case then cut through the politics,
if it is the former, then you are moving into a centralized model anyway.

Server Based Licenses (Centralized)

With that out of the way, let’s talk about centralization. The centralized model
requires a Windows server running the VMware licensing services. These serv-
ices are really the FlexNet/FlexLM services, and I would suggest you install this
first (prior to VirtualCenter) as it is pretty much required anyway. The server-
based (Centralized) model is the most common in use in ESX environments. It
allows for you to add your licenses for base ESX Functionality (licensed by
processor socket) and allows for licensing for additional functionality like VMo-
tion, DRS, HA services, Virtual SMP etc.

 103

Figure 4- 2: Centralized Licensing

The nice thing about this model is that you can generate your license file for
your entire environment (let’s say 100 CPU’s as an example); then, dole it out as
your ESX servers come online regardless of the number of CPU’s they have.
Essentially you can have multiple hardware form factors (duals, quads, eight-
ways, etc.) all pulling from the same server, and as long as you have available
licenses, they will be good to go. Additionally, this centralized model makes
licensing much easier to manage. You have one place to add and remove li-
censes and can restrict access to that server/application as needed.

In a multiple site model, you can opt to host the licenses at the corporate site
and have the remotely located ESX servers connect to that server. If the WAN
link between the remote site and central office is down it won’t kill the remote
ESX hosts. The VM’s already running will continue to do so, but you cannot
make configuration changes (more about that later in the chapter). If you feel
that this is too much of a risk, you can put a license server at the remote site.
Often license services are located on the VirtualCenter server, which makes
sense, since that is the central configuration point and the tools you would most
likely use to make the changes you want. VirtualCenter server placement is
much more important than the license server placement, and you should finish
reading the next few sections before jumping into a decision about license
server placement.

The draw back to this model is that it is centralized and doesn’t really allow you
to earmark licenses for specific servers or business units. If in your environment

 104

your business units own the licenses for ESX, then they may have reservations
about centralizing them. Another drawback to this model is that it is a single
point of failure, not a massive failure, mind you, but not easily made redundant.
See, the license server parameters for each host is set on a host by host basis.
Meaning, at time of install, you point your server to a license server, give it the
port number and it knows where to get licenses from. The issue with this is that
if the license server (or link to it) is down (and FlexLM isn’t really clusterable)
the ESX servers can’t get their licenses. Now this is not the end of the world
since ESX servers will continue to operate and you are not even in violation of
the license for 14 days! In addition the already running VM’s will continue to
run, but no new hosts can be added to the clusters. We’ll talk about some li-
censing options for high availability environments in a moment, for now just
understand the limitations.

• Single management point for all licenses

• The only way to go (because of previous advantage) in large ESX
environments

• Requires an additional Windows Server to host the services
(though license services are often co-located with VirtualCenter
services)

• A single server outage or down WAN link can be a single point of
failure (though it does not affect already running VM’s or Hosts)

If licensing model seems familiar to you it is probably because Citrix uses the
same platform, only in their use of this model they tie their license file to the
host name of the server on which the license service resides. VMware does not
do this as it would be a royal pain in the butt when using Host-based licensing.
Hopefully, they will never go to that model.

Host Based Licenses (Per Server)

Host based licenses are often used in small one or two server environments.
They have the advantage of not requiring a separate server for hosting the li-
cense file but require that you install (and manage) the licenses on a per host
basis. While this works (and is used) in many small environments, it is not very
scalable and can become a management nightmare when licenses need to be

 105

upgraded or changed for some reason. In addition if you are going to run Virtu-
alCenter to manage these one or two hosts, then you need a license service run-
ning on a Windows server for the VirtualCenter server. Since most
environments beyond one or two servers use VirtualCenter (and therefore have
the license services running on windows) it is easiest just to centralize the li-
censes on that server.

• Does not require a Windows Server for licensing (unless you also
use VirtualCenter)

• VM’s and hosts can still be started and restarted if a license server
is down

• Decentralized model requiring host licenses be managed individu-
ally

License Server High Availability and Common Imple-
mentations
In most cases (in every case I have been a part of) the license services reside on
the same Windows server that is hosting the VirtualCenter services. The license
service itself is a lightweight, almost no resources used, type of service, and
could easily reside on any server in the environment. It just makes a lot of sense
to match it up with the VirtualCenter server. The other thing about a down li-
cense server is that running VM’s and hosts are not affected for 14 days. Basi-
cally, you have 2 weeks to get the license server back up and running (from a
legality perspective). Of course you can’t add any new hosts the environment,
but VM’s continue to operate. Personally I think VMware has went out of their
way to make this easy to live with, but maybe that’s just me.

At this point it is important to understand that neither VirtualCenter nor the
VMware License Services are supported in a clustered configuration. The Virtu-
alCenter database may be hosted on a cluster, but the services themselves are
not cluster aware. It is also important to note that VirtualCenter uses a ‘Heart-
beat’ at 5 minute intervals to determine if the license service is still available and
if there have been any changes to the licenses (remember these are just files
managed by other interfaces). If the licenses have changed (or the license server
goes away, same applies to the VirtualCenter server) it basically notes that the

 106

licenses affected are now in an “Unlicensed Use” state. The idea here is that if
the license server returns to service (or the single license) things will go back to
normal, but it may take 5 minutes because of the polling interval.

Now, let’s get back to the common implementations part of this.

• VMware recommends that you: Install the License Service on the
VirtualCenter server and;

• States that you can make this server a Virtual Machine and place
that Virtual Machine in an HA cluster to provide redundancy.

We need to look at each of these individually and explore a couple of other op-
tions. The first recommendation makes complete sense in that if you already
have a Windows server hosting VirtualCenter why not use it for the Licensing
services. The second needs to be explored a little more.

License Service on a VM

The second suggestion is a little more interesting, and we should explore a bit
without getting too much into HA and its internals just yet. Reviewing the next
image we will notice a few interesting attributes:

• The HA heartbeat traffic for the host is done via the console inter-
face over the physical network.

• TCP traffic for HA uses ports 2050 thru 5000 and 8042 thru 8045

• HA services run on the host itself and are NOT part of Virtual-
Center; they are just configured using VirtualCenter.

• Using the image below ESX Hosts will look for licenses via their
console interface, out over the physical network, back to the Virtu-
alSwitch interface, then to a Virtual Switch, and ultimately the Li-
cense Server (When the license server is a VM).

• If Host 1 fails (let’s assume a server shutdown of some type) the
Virtual Machine restarts on Host 2, generally within a few minutes.

• The remaining hosts contact the license server, as before, once
network connectivity is re-established by the VM

 107

Figure 4- 3: License Service on a VM

This seems to work fairly well but ignores some basic limitations of HA and
hard shutdown Windows servers. If the host completely fails the VM will restart
on another host (good for us). And if this VM hosts just the license services for
VMware there are really going to be no problems since HA kicked in and the
license service is not heavily transactional.

But if Host 1 does not completely shutdown, let’s assume that you only loose
connectivity to storage on Host 1, then the VM will eventually blue screen (due
to loss of connectivity to its disk), but the VM and host are still running. If this
happens HA failover never occurs, yet you have lost your licensing service.

HA services (the good and the bad) are gone over in more detail at the end of
the chapter, but for now it’s important to understand that it protects against a
hardware failure on the host and RESTARTS the VM as if it had had its power
cord pulled. It does not VMotion VM’s off as that assumes the host is still up
and running, which if HA has kicked in, it’s not. Also, it is important to note
that you need a host failure, and not something like a loss of storage connec-
tivity, to make HA activate.

 108

License Service on a Physical Machine

Another option is to place your License server on a physical machine. In this
scenario you are doing this for one of two reasons. The first is that your VC
server is physical, and therefore you have decided to place your license services
on the same physical box. Or, you have an existing FlexNet server (for maybe a
Citrix environment) and are going to go ahead and use that for VMware, too.

Figure 4- 4: License Service on a physical machine

The trick with this is that you still need some type of redundancy. In most cases,
we will use DNS names (read alias) for the license service (like vmwareli-
cense.company.com). In a physical server model you could have a standby
server, with the license servers loaded and none of the hosts pointed at it. Use
the DNS name (as the figure is shown below) during configuration, and in the
event of a server failure, simply install the licenses on the license server and
change the DNS alias. This of course would require somewhat short TTL’s on
the DNS side, but it would ensure that within a few minutes your licenses are
back up and available.

Using Software-Based Replication for Redundancy

A final option for your redundant license server configurations (whether virtual
or physical), is to use a software replication package like Co-Standby Server or
NSI’s Doubletake. These types of packages essentially do software base replica-

 109

tion between two servers with a named primary and standby. In the event of
one server going down, the other server is notified (via a heartbeat) and takes
over the services of the primary. In some cases, these packages even take over
the original host name and IP address.

This type of solution will work either physical or virtual and can even allow for
you to run a physical server and a virtual standby. The drawback to using these
is cost. While the level of redundancy is great, you have to shell out some dol-
lars for these packages, and the better they are the more they hit your pocket
book.

VirtualCenter Server and Services
While VirtualCenter is sometimes talked about as an add-on product for ESX, it
is really central to the entire system, and needed for almost all of the advanced
functionality. VirtualCenter will (in most environments) be the daily tool used to
monitor, manage, and configure their ESX environment. It provides several
crucial functions in each ESX environment including:

• Configuration of the ESX servers

• Resource management for the hosts and virtual machines

• Console access for the Virtual machines

• Performance reporting for VM’s and Hosts

• Inventory views into Hosts and virtual machine

• Ability to logically group these objects and provide role based secu-
rity

• Alerting on performance thresholds for individual VM’s or Hosts.

• Interfacing for third party products in the environment

• Configuration of ESX Clusters for both HA and DRS

• Configuration of resource pools to manage VM resource utilization

So regardless of what else goes on in your environment, you will more than
likely want a VirtualCenter server, and quite frankly, we see it as a must beyond

 110

one or two servers. So, to better understand what VirtualCenter does, let’s look
at its components, then dive into how to design the system.

Figure 4- 5: VirtualCenter Components

The first two components to note are the “optional” ones: the VMware Web
Service and the VirtualCenter Web Access. These two should not intermingle as
they are really two separate entities. The VMware Web Service is the SDK and
interface for many third-party tools. If you use something like Provision Net-
work’s VDI broker or certain products from HP, these tools ask for the Virtu-
alCenter server name and will want to really connect to the SDK. The Web
Access component is a web page/s for Virtual machine management. It has
limited functionality but will allow you to do some things. So while these are
“optional” you might as well install them and save yourself the hassle later when
some new fancy tool wants to use them.

As you can see, the rest of the components circle around the vpxd or Virtual-
Center service. This service is what your VirtualCenter client (or Virtual Infra-
structure Client) will connect to when managing the environment. The VPXD
service also talks to a database (where it stores its information) and the License
Services (to make sure you are compliant on the licensing side).

 111

Often times in small environments all of these components (short of the ESX
host) are located on the same physical machine. Administrators will install MS
SQL on their Windows server and then install the VirtualCenter package includ-
ing the optional services, the License Services, and the VI client. It all works and
is even fairly scalable, but let’s look at each of these components individually.

VirtualCenter Service (VPDX) hosting

The VC server itself needs little in the way of resources. Thinking about the
diagram, and about some of the rules we are about to go over; you can tell that
there will not be a lot of connectivity to the VC server. It will communicate
with hosts in the environment (maybe even a lot of them), possibly have several
users connected with the VI client, and maybe even a third party tool using the
web service. But even with this number of connections, we may be talking only
on the high side of 100 or so… not a lot of load. In addition, VMware recom-
mends that a VirtualCenter 2 server not have more than 2000 VM’s or 100 ESX
hosts to maintain its performance. While most environments won’t start off
with anywhere near this many, it is easy to look ahead (in this era of blades) and
see an environment with 100 Hosts, at about 8-12 VM’s per blade and pushing
that limit. Our general recommendation for sizing is as follows:

• 1 processor for up to 25 hosts, add a second processor if you plan
on scaling above 25

• 512 MB base memory, then about 1 MB of memory per every VM
managed and 2 MB of memory per managed host.

Following those recommendations, let’s look at two sample environments and
come up with their VirtualCenter server configs (remember these exclude the
SQL or Oracle DB if they are running locally). If I had a 10 Host environment
with 200 Virtual Machines, I would need 512+ (10*2) + (200*1) = 732 or 768
(rounded up to next 256 increment). But if the environment needed to scale to
60 hosts and 1200 VM’s we would need 512 + (60*2) + (1200*1) = 1832 or
2048 rounded up to the next increment.

Granted, the equations are simplified, but as you can tell a dual processor, 2GB
system will pretty much handle the load for one of their bigger supported envi-
ronments. You may also notice we start out at 512. That allows us to assume
there is overhead from the OS, Monitoring agents, anti-virus, etc. But in any

 112

case, you can see this doesn’t have to be a powerful system. If you want to be a
little more conservative, take the MB per VM and per host and increase them by
50% or 1.5MB per VM and 3 MB per host.

Physical vs. Virtual Machine VirtualCenter

Running the VirtualCenter server as a Virtual Machine is not an issue. A num-
ber of organizations do it and do it successfully. Though, in some shops, the
question of running your management service, which allows you to manage and
view and possibly troubleshoot your virtual infrastructure, becomes a conten-
tious one; so let’s look at some of the benefits and drawbacks.

• Reduced number of physical servers

• Hardware failures covered by HA services

• Load can be shifted and the VM easily “upgraded”

• VM can be snapshot before upgrades and patches

• No need for a standby server, HA will often recover faster than
you can configure and start the standby server

• HA Services do not cover all failures (such as a storage failure)

• Internal resistance due to managing a VM environment with a VM

Running it as a VM is not a bad idea as long as you do not host the VC database
on that same server. Here we are explicitly talking about the VC server and not
it’s DB. The databases used (SQL and Oracle) are transactional databases that
do not like to have their availability based on a power off and power on. Loss of
transactions can occur and in really bad cases, database corruption. We suggest
that if running this as a VM, separate the Database from the VirtualCenter
Server. Then the DB can be hosted on a cluster (VM or Physical) and be guar-
anteed higher availability easily.

If you elect to run the VirtualCenter as a Physical server then you have a num-
ber of options. Obviously, you lose some of the HA features when not running
it as a VM. So, you need to plan accordingly. One of your options is to use a

 113

physical machine and a standby. The standby can even have VirtualCenter in-
stalled; then during a failure start it up, point it to the Database, and off you go.
You should (on the standby) change the VirtualCenter unique ID (located in the
VI Client –Administration – VirtualCenter Server Configuration –Runtime Set-
tings) to match that of the production server, but it is a quickly recoverable so-
lution.

You also have the option of using something like an NSI Doubletake to repli-
cate the VC server to a standby. Again, this can be physical to physical or physi-
cal to Virtual. Thinking about it some, it can even be virtual to virtual if you so
choose.

While VMware doesn’t officially state that VC is cluster aware* they do have
some articles on it (from the VC 1.x days), and I am sure they are planning on
making VC a clusterable application though it’s not available yet. In some cases,
Users in the forums have posted links to cluster VC steps…

Just before going to print VMware posted an article on clustering the Virtual-
Center service for 2.0. We will cover this in detail the next edition, once we
have had time to test it. The article can be found at:
http://www.vmware.com/pdf/VC_MSCS.pdf

VirtualCenter Database Sizing
Whenever designing the VC solution and talking to the DBA’s, they always
want to know how big this database is going to get. From a utilization stand-
point (processor and memory) this DB has very few clients (Uh, your VC
server) and probably will never have more than 10 connections to the DB from
even your VC server. So, with low utilization it always comes down to a ques-
tion of space. At the time of this writing, VMware has a spreadsheet they float
around to help estimate size of the DB. But, it is important to note that its siz-
ing does change between versions as they change counters and objects. So, siz-
ing described here is based on VirtualCenter 2.0.1 Patch 2 and later.

The biggest factors impacting the size of your VC database are the number of
Virtual Machines and the logging level set in VirtualCenter. The default logging
level in VC is Level 1 of 4 possible levels. Each time you crank up to the next

 114

level you increase the number of counters/metrics being collected on each sample,
thus increasing the amount of data. In addition, the default smallest collection
interval is 5 minutes. If you change this and increase the frequency from the
defaults, these numbers can also be skewed.

Anyway, let’s look at some sizing numbers below based on the most important
items with regards to the database sizes at different logging levels for Virtual-
Center:

 Objects by logging level (in MB)

VM Host Cluster Res Pools

Logging Level 1 3.52 3.01 3.52 0

Logging Level 2 10.05 10.05 9.55 7.03

Logging Level 3 26.65 49.75 9.55 7.03

Logging Level 4 37.19 71.36 21.6 196.3

 These numbers are based on common configurations for hosts, and VM’s,
meaning the Host numbers assume a 4 processor host (or dual proc dual core)
with several network interfaces and numerous disk devices etc. The VM num-
bers assume the average VM is a single processor with 1 disk and 1 network
interface. The Cluster and Resource Pools are pretty steady numbers, but if your
VM’s all have 2 disks instead of 1, or if your Hosts have 8 processors instead of
4, you can fudge these numbers up by 15% for logging levels 3 and 4. At levels
1 and 2, it really doesn’t matter much.

In addition to the raw database size, which you can get by multiplying your ex-
pected number of each object times the MB at the used logging level, you
should really allow the DB size *2 to allow for the temp database that will also
use disk space. Logging level selection is looked at in the next section, but for
now let’s runs through some examples.

 115

Remember VMware does have a spreadsheet calculator on line, though it is
sometimes hard to find, at the time of this writing you could download it here:

www.vmware.com/support/vi3/doc/vc_db_calculator.xls

Sample Environment 1: 10 Hosts, 150 VM’s, 1 Cluster, and 2 Re-
source pools, level 1

Here, we do some simple arithmetic to determine the potential DB size after a
year of data. Year-old data is purged so the DB will remain about the same size
over time.

of Objects MB/Per Total @ 1 yr

VM’s 150 3.52 528

Hosts 10 3.01 30.1

Clusters 1 3.52 3.52

Res Pools 2 0 0

total: 561.62 MB

 As you can see, we are running about 15 VM’s per host and wind up with
about a 560 MB database. Of that 528MB is from the Virtual Machines. Now,
let’s change the number of hosts (by using smaller hosts but host the same
number of Virtual Machines.

Sample Environment 2: 20 Hosts, 150 VM’s, 2 Clusters, and 4 Re-
source pools, level 1

Here we have basically doubled the size of the environment from a host per-
spective, creating two clusters, compared to one, but running the same number
of virtual machines.

 116

of Objects MB/Per Total @ 1 yr

VM’s 150 3.52 528

Hosts 20 3.01 60.2

Clusters 2 3.52 7.04

Res Pools 4 0 0

total: 595.24 MB

 As you can see, the additional hosts are really just 10 or 15 new logical objects
being monitored and barely impact the size of the DB. The greatest number of
Objects (with unique metrics being monitored for each) is the VM’s; therefore,
they are most important in determining the size of the DB.

Sample Environment 3: 10 Hosts, 150 VM’s, 1 Cluster, and 2 Re-
source pools, level 4

In this sample we take environment 1, which previously was at logging level
1(estimated at 560MB), and crank the logging level up to level 4. Now, most
environments are never going to run at level 4 but this shows how the logging
level increases the DB size dramatically:

of Objects MB/Per Total @ 1 yr

VM’s 150 37.19 5578.5

Hosts 10 71.36 713.6

 117

Clusters 1 21.6 21.6

Res Pools 2 196.3 392.6

total: 6706.3 MB

Notice that the environment that did have a 560 MB db is now more than 10
times that size at about 6.7GB. Of course you may be higher or lower than this
(use a 10-15% plus or minus) but the trick is to realize that the logging level has
a major impact on DB size by increasing the number of metrics being moni-
tored for each item.

VirtualCenter Stat Collection and Logging Levels

Number of processors per host and VM and number of network interfaces and
disk devices for hosts or VM’s, all have an impact on the size of the DB, but
their impact is fairly minimal when compared to the logging level and sheer
number of metrics that are added as you increase the logging level. Because of
this, let’s look at the different logging levels, what they provide you, and why
you would use them.

Beware: Changing your logging level in VC removes all of your previous VC
logged data. I believe they change the fields/tables when they change the log-
ging level; so, when you change this in VirtualCenter it removes all of your pre-
vious data.

Logging Level 1

This level provides the basic metrics for VM's and hosts, including CPU, Disk,
Memory and network usage. Uptime metrics are counted along with DRS met-
rics. Statistical information for individual devices is not collected in this logging
level.

Logging Level 2

This level grabs all of the metrics for the core four (CPU, disk, memory, and
network) and device statistics that were not included in the level 1. As an exam-

 118

ple, an average quad processor, ESX server will have 6 metrics collected at level
1 during a sample interval, while level 2 collects a total of about 20 (+/- a few
based on the number of devices in the host).

This level is used most often in environments that do capacity planning and
charge back on VM’s. It allows you a pretty granular look at the information
about the core four without grabbing level 3 counters and which is a big jump
in the amount of metrics monitored.

Logging Level 3

This level collects all metrics for all counter groups. The increase in from level 2
(20 metrics each sample interval) is almost 500%. The total metrics captured
here is 131. This level is often used for troubleshooting or environments in
ASP/Hosting models.

Logging Level 4

Level 4 is the highest logging level and collects samples for any metric sup-
ported by virtual center. Total metrics collected for a single quad processor host
of average config is a small jump from level 3 to 174.

The size of the VC database, while taking up 3 pages here, is really not all that
important to your overall infrastructure design. We simply wanted to provide
you with some info on sizing, so when your DBA explains that you need 2 con-
trollers, with 5 logical partitions to support your VC db, and he needs his sizing
info, you can show him some simple math, and move on to your next part of
the design… Like VirtualCenter system design.

VirtualCenter System Design
In an ESX 3.0 environment there are a number of communications paths you
need to worry about when designing the environment. The first, and most ob-
vious, is VC to ESX host communications. These are the “no brainers” with
which most people are familiar. Essentially, the VC server sends commands to
ESX hosts for execution (such as starting a virtual machine), and performance
data is shipped to the VC server for each host being managed by that server.

 119

 Figure 4- 6: VirtualCenter Overview

These are the communications that most people worry about, but the reality is
that host servers will also communicate to DNS (really dependent on this if us-
ing HA services in the cluster), NTP, and Authentication for shell logins etc. In
addition, you need to think about the connection from each host to the License
server (when using a centralized license server) and for the VC server to the VC
database. Finally, the VC server will also communicate with Active Directory
(or possibly Windows local groups) for authorization to log in to the VC client
and perform operations/issue commands within VC.

To show a simple example let’s assume you want to VMotion a VM from one
host server to another. In doing so the following steps (simplified) will show
how almost all the communication paths are used:

1. User launches VI Client and connects to the VC server and inputs
credentials.

2. VC server contacts the database.

3. VC server checks account against DB for this user’s rights to log
on and matches to roles in VC (Windows auth done at this point)

 120

4. VI Client still in communication with VC server begins to load in-
ventory in the GUI from the VC server that is reading it from the
DB.

5. User selects a VM and issues a VMotion command.

6. Licensing is checked on those hosts along with prerequisite checks
for VMotion compatibility.

7. VMotion begins (which we won’t get into here).

8. Progress is reported to VC DB, errors/logs are written, and normal
VMotion traffic happens between host servers.

9. Change is reflected is in GUI once VMotion is completed, and also
VM location info is written into the DB

As you can see, there is a lot of chatter going on in this environment. Not heavy
traffic, mind you, but enough to be sure that if one of the links is broken it can
make for a fun night of troubleshooting.

VC Server Locations in the Enterprise

Now that we have a basic understanding of the communication paths in ESX
environments we have to look at the decisions that need to be made about
where to place the VC Server or Servers on your network. If you have a single
datacenter or single central point that ESX will be used, then your decision is
already made. But, if you will have ESX in multiple locations you will need to
decide if you will have a VC server in each location with an ESX server, a VC
server in only large sites, or a VC server in only a central site.

This decision should be made with the following items taken into account:

• Bandwidth available between sites containing ESX servers

• Number of ESX servers in a location

• Location of administrators for the ESX servers in any given loca-
tion

• DR/BC Plans

 121

Centralized VirtualCenter

First let’s look at a centralized VC Model with both high-speed and low-speed
connected sites. In this scenario, we assume that ESX servers are located at
both of the remote sites and that the administrator has decided to manage them
all via a single VC server and DB.

Figure 4- 7: Centralized VirtualCenter

• Single management point for all clusters/hosts

• Single place to security for your whole ESX environment

• Single server to manage, backup, patch, update, etc…

• Administrators from remote sites can still access the VC client if
they have been given rights

• Almost unusable, if not completely unusable, over low bandwidth
links

• May require changes in how templates are deployed, updated, and
managed

• Not the best for DR/Hot site configurations

 122

The Centralized VC model has a number of benefits. You have one point of
management for every server, you have single place to set security in the entire
virtual environment, and only one server and database to manage, update,
patch, and monitor. In this configuration, remote administrators (like from Site
2 in this example) can still access the VC server from their site and manage their
servers if they have been given proper permissions.

The drawback to this design is that low speed/low bandwidth links can cause
sporadic issues in VirtualCenter, such as disconnected servers, slow downs in
getting performance information, and sluggish response when issuing com-
mands to be executed on the host. If a site has a small connection to the central
location (like a single T-1) VC may still work, but timeouts and other issues
when communicating over a T-1 used for other traffic (as seen in some envi-
ronments) makes VC almost unusable.

A quick note here; recently I was at a VMware client with a 10+ Mb ATM link
that was lightly used. Their centralized VC model works fairly well with just a
few things/workarounds to make template deployment and updates easy to use.
But, just a few weeks earlier I stopped at another client, using almost the same
configuration with a 35 Mb link that was totally saturated and has had nothing
but issues with the centralized model. So it’s not just the link size, but its avail-
able bandwidth that you need to consider.

Finally, with centralized models your template deployments can become an is-
sue. Generally template deployment is very bandwidth intensive process. If
done over the network (like templates being centralized then copied to remote
VMFS volumes) you could wind up copying gigs and gigs of data. Of course
this often fails right out of the gate in low speed connections. So centralizing
like this requires that you configure templates at each location anyway, to speed
template deployment. In some cases, administrators will resort to NOT using
the template functionality in VC and instead leaving a VM or VM’s on a remote
server and VMFS volume that acts as a template, but they simply clone it or
copy it using shell commands.

Decentralized VirtualCenter Servers

In this design option, we use a VC server and database at each location. We as-
sume here that we have centralized administrators for Site 1 and possibly some

 123

offshoot remote locations. Site 2 is a second datacenter with its own set of ad-
ministrators and also has its own VirtualCenter server. You will notice that we
show the License server hosted centrally. License services were discussed previ-
ously in this chapter, and here we have decided that the centralized licensing will
be used since all sites are sharing the same licenses, instead of a bunch of indi-
vidual purchases managed by site.

Figure 4- 8: Decentralized VirtualCenter

You will also notice in this image that Admin in Site 1 is connecting to the Vir-
tualCenter server in the Remote site. If the link has low latency and plenty of
bandwidth, this often works fine using the VI client. This configuration is
slower than a LAN, obviously, but still usable. If this link is saturated or ex-
tremely slow Administrators will often load the VI client right on the VC server,
then just use MS Terminal Services to access the server and run the VI client for
managing that remote environment.

• Works well over limited bandwidth links

• Ability to decentralize security for different environment owners

• Works best for DR/Hot Site configurations

 124

• Templates are localized in each site and can be used “traditionally”

• Multiple servers to manage, update, patch, backup, etc…

• Decentralized security points, must configured in multiple locations

• Disjointed virtual infrastructure creating datacenter based silos

The obvious benefit of the decentralized model is that it is simple. You bring up
an ESX 3.x cluster in a new site, and you bring up its VirtualCenter
management components and configure them. Replicate your design and pro-
cedures from place to place, and you are done. The biggest disadvantage is that
the management is decentralized now, but is this really a big deal? If you think
about other management tools in your environment like HP SIM, or HP Open-
view or IBM Director or Desktop management tools you have, are they com-
pletely centralized? Often not. In a lot of cases these are decentralized since the
staff in that location handles / uses the management systems. So, while decen-
tralizing can have its drawbacks, it is a model used more often than not in
larger, multi-site environments.

An important note here about remote sites and design alternatives- from a Vir-
tualCenter perspective, a 50 or 100Mb WAN link (non-saturated) is as good as a
LAN connection. Most of the information going back and forth between hosts
and the VC server is fairly light, and a centralized model for VC works just fine
(barring any potential template issues previously stated) with this type of avail-
able bandwidth. The scenarios we are describing is sub 35Mb connections and
specifically things like T-1s, E-1’s or aggregated links of the like. In addition, it
is important to note that this does not mean you can simply span an ESX clus-
ter across sites, but that VC (as discussed here) can be used to manage clusters
in different sites. Clusters and their design considerations are discussed later in
this chapter.

Cluster Overview
Clusters in ESX 3.X are really simple to understand once you break it down to
the basic functions of a cluster and the required components to make these
functions work. From a functional stand point, a cluster is a set of like-
configured ESX Servers, in the same site/datacenter, that share common stor-
age and networks and have VMotion enabled across the hosts. There are some

 125

important configurations and requirements to make our simple definition a real-
ity, but the basics concepts are detailed below along with a drawing of a simple
2 cluster environment.

Figure 4- 9: Cluster

Let’s take a look at these two clusters and review each of the decisions that went
into making these two different configurations. The first cluster (prod cluster) is
a set of 8 quad processor systems, hosting 150+ Virtual Machines. As you can
see, all 8 servers share the same VMFS volumes (a total of 10 VMFS volumes in
this case). VM’s in this cluster only reside on those 10 LUN’s. The second clus-
ter is a smaller cluster using 3 shared LUN’s and 3 dual processor hosts hosting
25 Virtual Machines.

The first item to notice is the size of the servers, Dual processor vs. Quad proc-
essor configurations. When doing cluster design the first question is how many
VM’s do you want to host? In this case they have decided to separate the DMZ
VM’s from the Prod VM’s. We can assume that this is due to physical network
connectivity and/or security policies in the organization to keep DMZ separate
from Prod. That creates two distinct pools of Virtual Machines to be hosted
and therefore two distinct clusters. You see, since the configurations have to be
split (from a network perspective) the configuration of the hosts, not to men-
tion the physical connectivity to the network will be different, therefore VM’s
cannot be VMotioned / mixed between these hosts.

 126

Once the physical limitation/configuration was decided on then we have to run
the number of expected VM’s (25 in the DMZ and 150+ in the Prod) through a
simple exercise taking into account the following:

1. ESX 3.x clusters are limited to 16 servers per cluster (based on HA
limits).

2. If not using HA and only using DRS, clusters are limited to 32
nodes.

3. Reality is that a common best practice is to limit cluster size to be-
tween 10 and 12 hosts.

4. Estimated average VM to Processor ratio (in this case we will as-
sume 6)

5. The amount of redundancy we want to have in the farm from a
host level (Newhart?) In this case we assume at least N+1.

6. Storage will be allocated as needed; all volumes will be VMFS and
shared amongst hosts.

Hardware selections (dual, quads, 8-ways, multi-cores etc…) are discussed in
Chapter 3. Here we are assuming a single core for simplicity, for a “core” dis-
cussion please jump back to chapter 3. Assuming that we will host 6 VM’s per
processor we know that the DMZ will need at least 4 (and a fraction) to host 25
Virtual Machines. In the prod environment we want to host about 150+ virtual
machines. Using that same 6:1 ratio we can estimate that we need about 25
processors not including redundancy. Knowing the number of processors re-
quired for each environment we can then decide on the form factor based on
costs and amount of redundancy.

For the DMZ we need about 4 processors to host the expected VM’s. In this
case we can buy 2 quad processor systems getting us 8 total processors, or we
can purchase 3 dual processor systems for a total of 6 processors. In the quad
processor case we have almost 4 processors completely unused. Yes, I know
ESX will still use them, just not fully, but that is not the point. The point is we
have just over purchased by purchasing way more machine that we need just to
satisfy the N+1 need. In the dual processor configuration the active VM’s can
basically be hosted on 2 dual processor servers requiring a 3rd to act as the N+1
server which (in almost every case) 3 dual processor servers are much less ex-
pensive than 2 quad processor servers.

 127

On the Production cluster we have to host 150+ VM’s or about 24 or 25 proc-
essors. Again this can be done with quad processors for a total of 6 or 7 hosts.
Or it can be done in a dual processor configuration requiring 13 hosts. When
using dual processor configs with this cluster we are doubling the number of
fiber and network connections, and their cost may come into play In addition,
the concept of managing twice as many servers and being close to the 16 server
limit in the cluster is an issue.

The decision in this example was made to go with a quad processor system
(needing 7 hosts) plus an extra to match the N+1 requirement, while still having
room to expand the cluster without starting a new one. Now that we have fig-
ured out the hardware needs, we will focus on the Cluster options in the design.

Cluster Design Options
In chapter 3 we looked at mixing workloads (like test and dev with production
etc.) and how that can affect your network connectivity requirements or change
the hardware you are about to purchase. Assuming that you are past the point
of deciding what is going to be hosted on these servers, let’s review cluster re-
quirements then look at the design alternatives:

• All servers in a cluster will need to be zoned to the same VMFS
storage.

• Servers will need to be pretty much identically configured:

• Processors will need to be similar if not identical (just do a search
on VMware’s site for Processors and VMotion compatibility,
there’s a list).

• Like major software version (3.x) – try to keep the patch level the
same to minimize issues.

• Licensing will need to be identical (to allow for VMotion, DRS,
HA, or any other options you wish to use).

• Network connectivity will need to be the same (physical connec-
tions to the same network or logical networks when using VLAN
tagging) Virtual Switch names and configurations should be identi-
cal.

 128

• Should all be in the same site as cross site VMotion is not the real-
ity for any site connected via a WAN link.

Knowing these requirements we are still left with a lot of alternatives. Let’s cre-
ate a sample environment containing the following:

• 2 Logical networks (VLANs) test and prod on the internal network

• 1 Separate physical network for the DMZ

• 1 Mgmt network (VLAN) used for out of band mgmt (like ILO,
DRAC etc), and other mgmt tools

• VM’s will be required in each of the environments (Mgmt, DMZ,
Test and Prod)

• 200 VM’s in total with 10 VM’s, 20 VM’s, 65 VM’s and 105 VM’s
respectively

Figure 4- 10: VM Environment

Single Cluster Design

The first option is to create a single cluster that will host VM’s for all environ-
ments on the network. This cluster will require about 10 ESX servers assuming
quad processor hosts with an average load of 24 VM’s per server maximum and
N+1 redundancy.

 129

Figure 4- 11: Single Cluster

The big benefit of this design is that you have a single cluster for all VM’s. This
allows you to leverage a single set of servers hosting different workloads for
better performance and allowing you the ultimate virtual infrastructure; any host
can host any VM for any network segment. In addition, you reduce the number
of hosts required and eliminate unique silos and configurations of ESX in your
environment.

While this environment simplifies the mgmt of the virtual infrastructure, in the
long run it does increase the complexity of the system and hosts. In our exam-
ple the host is going to have physical network connections to both the internal
network and the DMZ. In addition, the Virtual Switches on the internal net-
work will have multiple port groups configured for the 3 logical VLAN’s. Each
time a VM is added the proper Virtual Switch will have to be selected to ensure
proper network connectivity of the VM. While this sounds a little daunting it is
not that much to handle, but it increases the network complexity from a trunk-
ing/vlaning perspective and may get push back from your security team for
hosting DMZ VM’s on the “inside” of the network.

• Single type of server/configuration to manage

• Ability to optimally balance work loads

• No siloing/underutilization do to siloing

• Reduced number of hosts because capacity used for redundancy is
used across all environments

 130

• Easier to manage in the long run

• Lowest capital cost upfront

• More complex from a host networking perspective

• Security teams will often say no to this just out of principal

• Requires more management of resources and resource pools due to
the large number of environments being hosted

Silo’d Cluster Design

In this alternative a cluster is created for each of the unique network environ-
ments. It should be noted that each ESX host in the environment will still have
a network connection (or two) to the mgmt or production network for its serv-
ice console, but here we are just talking about VM connectivity. As you can see,
we now have 4 clusters for this environment. The mgmt network will have 2
ESX hosts, the production environment will require 6 hosts, the DMZ will have
2 hosts, and the test and dev cluster will have 4 hosts. Essentially the environ-
ment is silo’d by the network to which the VM’s will connect. This eventually
results in 4 clusters and 14 hosts.

Figure 4- 12: Silo’ Cluster

 131

In addition to network separation, the cluster design will take into account zon-
ing of the VMFS storage. Each environment will have its own LUN’s zoned to
it and should not be crossed.

The major benefit of this design is that it is the easiest to implement when you
first get into ESX Server. The major drawback is that once implemented it is a
real pain to get out of for both technology and political reasons. Selling this type
of cluster design in an environment is easy to do; migrating to a more consoli-
dated model later on can be cumbersome when you start talking about changing
the LUN zoning, reconfiguring the switch ports servers are connected to, mi-
grating VM’s etc. In addition, when you silo servers that are alike, such as the
large number of web servers in the DMZ, tool servers in the mgmt area, or un-
used test servers in the test environment you will not be able to optimally mix
differing work load types, meaning you will run into similar bottlenecks on
hosts running similar types of VM’s.

• Simplest option from an individual host networking perspective

• Increased number of hosts because capacity used for redundancy is
not leveraged across all environments

• Easiest to sell to internal teams during an initial implementation

• Requires very little with regards to resource management since A:
there is more available hosts and B: no VM’s from differing envi-
ronments

• Multiple configurations and clusters to manage

• Not an optimal configuration for balancing work loads

• Increased under utilization due to more redundant capacity

• Highest capital cost upfront due to the increase in hosts

Middle Ground- Some Silo’d Clusters

Often a good design comprise is to only silo off some of the clusters. One that
is used often is the separation of DMZ clusters from internal clusters. Using the
same fictional network this option would segregate the DMZ from the Internal
VM’s, creating 2 clusters with 9 hosts in one and two in the other. In some ESX

 132

environments they only have internal ESX hosts and may just separate the Dev
and Test VM’s from prod VM’s. In any of these cases, the trick is to find the
economies of scale, if you have an environment that is significantly large
enough to warrant its own cluster (lets say 8, 10 or 12 hosts) then the cost for
redundancy is minimal and it wouldn’t really hurt anything to remove it. Using
our example and only siloing off the DMZ VM’s we wind up with just 11 hosts
(1 more than a single cluster design) and still keep the security guys happy, but
we could have just as easily folded the DMZ into the Prod cluster and had the
Test/Dev cluster rolled out to its own.

Figure 4- 13: Mixed Cluster Design

The advantage here is that it allows for minimal siloing, but still keeps cost as
low as possible by leveraging the redundancy capacity across numerous envi-
ronments. It also is a good balance in that it keeps different types of workloads
running on the hosts to get close to optimal configuration for resource usage.

• Relatively easy to sell to internal teams

• Reduced number of hosts when compared to the completely silo’d
model

 133

• Reduces the number of silos to manage when compared to the
previous model

• Good balance between the two primary models

• Some teams/app owners may feel they need their own cluster

• Just as complex from a networking perspective as the first option

• Still requires resource management in any environments mixed (in
our example, prod, Test, and Mgmt).

• Siloing Test and Dev or DMZ type workloads decreases resource
utilization because of similar workload characteristics in these envi-
ronments

Distributed Resource Services (DRS) Enabled Clusters
When creating clusters in ESX 3, one of the options is to enable the cluster for
DRS. DRS is essentially a load leveling tool that uses resource utilization from
the hosts and VM’s to create recommendations for Virtual Machine placement.
DRS clusters are limited to 32 nodes maximum, but that number is essentially
artificial as most clusters that use DRS will also use HA services (discussed
next) which are limited to 16 nodes maximum. Why the conflict? Well DRS is a
product written by one group and HA is a product licensed from another ISV
then modified for VMware. The long and short is that if you plan on using DRS
and HA that 32 node limit goes out the window, and in most cases we even stay
a little below 16 nodes.

Anyway, DRS creates recommendations based on load that can be used as sim-
ple recommendations (seen in the VirtualCenter client) and acted on manually,
or they can be automated at different levels and allowed to automatically bal-
ance VM load across the environment.

DRS is controlled, managed and executed by VirtualCenter, unlike HA that is
managed and configured by VirtualCenter but runs independently (as an agent)
on each host. DRS’s essential functionality is to balance CPU and Memory load
on the hosts by moving VM’s from high-utilized hosts to less utilized hosts.
DRS does not take into account network or disk utilization (throughput or IO).

 134

Right now DRS’s focus is on processor and memory resources which happen to
be the two major bottlenecks in 99% of ESX servers.

To understand the advanced features of DRS, we first should look at how it
works from the basic recommendations perspective.

Figure 4- 14: DRS Cluster

In this example we have two nodes in a DRS cluster. Host 1 has 52% CPU
utilization and about 4GB of ram in use, while Host 2 has 30% CPU in use and
about 3GB. VirtualCenter (and specifically the DRS components) sees this dif-
ferential in utilization and attempts to determine which VM moves would bal-
ance the load. Here (a simplistic model mind you) the 10% CPU and 512MB
VM gets moved to the less utilized server. This results in the two servers almost
having the same load. The system does not move a VM like the 22% utilized
VM, since it would just create an imbalance where Host 2 is more utilized and
more moves would be needed to balance the load.

Obviously that is a simplistic look at how DRS works, but the important items
to note (at this point) is that this entire process is controlled by VirtualCenter
working off of performance information it collects from the ESX hosts. It is
also important to note that you have some control about the aggressiveness of
these moves and can control whether this process is fully automated, partially

 135

automated, or in completely manual mode, which basically just sends recom-
mendations to the admin and he decides whether to apply the recommendation
or not.

DRS Recommendations

VirtualCenter constantly reevaluates load in a DRS cluster. Basically, DRS is
driven by a default interval of 5 minutes or when a host is added or removed
from the cluster thereby affecting the load / capacity of the environment sig-
nificantly. So in any given hour DRS looks at load in a cluster 12 times, then
based on this creates a series of prioritized recommendations to level load
across the cluster.

These recommendations are prioritized by DRS and shown to the administra-
tors using a Star ranking. These “stars’ also correspond (inversely) to the aggres-
siveness of the DRS automation mode. So, star rankings can be seen like this:

Figure 4- 15: DRS Recommendations

 136

Looking at the image you can see that a recommendation with a “5 Star” rating
means that there is a huge load imbalance and making this change (moving this
one VM) will solve the imbalance. As you move down the ratings to a 1 star
rating, you have a very minor imbalance from which you will see almost no per-
formance impact. The automation levels are exactly the inverse of this. Meaning
at level 1 automation (the most conservative) it will only automatically apply
recommendations with 5 stars, while the level 5 automation will apply any rec-
ommendation (1 star or greater).

The reality is that these recommendations are movement recommendations for
single VM’s. In any production environment you are very unlikely to see a 5 star
rating. In most cases, a 5 star rating means you have moved a VM (manually) in
a DRS environment violating some type of affinity rule (discussed later) but for
straight utilization it is almost impossible to have a single VM cause that much
of an imbalance in your environment, so level 1 automation is almost useless
and can mess up a manual change you made for a reason. If you want to be fully
auto-mated, level 4 is just as good as any other.

 In any case, you should gain a level of comfort with DRS automation. Maybe
start at manual, look at the recommendations, apply them, then start to move
the automation level up and gain a level of comfort with each automation set-
ting.

Rules for Load Balanced or “Special” VM’s

When hosting load balanced VM’s running on an ESX cluster (two VM’s maybe
using Windows load balancing) or running multiple VM’s that have dependen-
cies on each other (like an application server that needs its database server up to
be useful), you may need to set some special rules to ensure VM’s are placed on
proper hosts.

DRS Affinity Rules

Affinity Rules, when talking about DRS affinity, should not be confused with
processor affinity in at the VM or host level. VM level processor affinity assigns
a VM to a specific processor on a host. DRS affinity allows you to set rules so
that multiple VM’s are always on the same host, or always kept on separate
hosts.

 137

If you select the DRS rule to “Keep Virtual Machines Together” the rule wizard
allows you to add multiple VM’s to a list affected by this rule. Essentially, DRS
will take this into consideration when making recommendations and assume
that these VM’s need to be on the same host, and when moved, they are always
moved together. This is most often used when VM’s are part of an application
set such as a front end and backend server, and you want to keep the traffic
between the servers local to the host on the virtual switch.

The opposite side of that rule is to “Separate Virtual Machines”. This will en-
sure that two or more VM’s are never placed on the same host by DRS. This is
most often used when you have a pair of load balanced VM’s to provide redun-
dancy for an application. If DRS were to move the VM’s onto the same host,
and there was a host failure, you basically lose your hardware redundancy and
both VM’s can go down at the same time. By configuring this DRS properly
you will ensure that it never moves the selected VM’s onto the same host.

DRS Automation Rules for Specific VM’s

DRS automation settings can be overridden on a per VM basis. Essentially, al-
lowing you to automate the entire environment but exclude certain VM’s from
being moved around by DRS. This is often done for “sensitive” VM’s in an
environment. A perfect example of this is Virtual Machines in a pharmaceutical
environment. Some of these VM’s are running pharmacy apps that are governed
by laws saying that the server (VM) its network configs, disk, and paths to disk
etc., can be audited at almost any time. In these environments they may still
want to use DRS to level load, but will need to override the DRS automation
for this VM and never move it just to level load.

To set these rules you can edit the cluster settings and edit the Virtual Machine
options. This then allows you to select the specific VM’s to override DRS set-
tings and set to one of 5 automation levels:

• Manual: Recommendations are created but have to be applied by a
human; this is often used to allow for change control on the move
for auditing purposes.

• Partially Automated: This is essentially like a level 1 or level auto-
mation for this VM, only move it if it corrects a large imbalance in
cluster load.

 138

• Fully automated: Which is essentially apply level 5 automation to
this VM

• Default: Which just accepts the Cluster’s DRS settings and applies
them to the VM.

• Disabled: Which ignores DRS for these VM’s. The VM’s load is
calculated as part of the host load, but no recommendations are
ever made for this VM and other VM’s are used to level host load.

These rules are great and allow you some granularity, but they come with a ca-
veat. They should be used sparingly. If you have a DRS cluster with 20 VM’s
and have DRS automated in the cluster but have disabled it for 17 VM’s or even
10 VM’s, you have effectively limited the balancing ability greatly. These settings
should be used judiciously and in probably no more than 25-35% of the envi-
ronment at most. Greater than that and you are limiting your options greatly
and incurring unneeded overhead.

Maintenance Mode

Not that this is a huge deal, but something we want to note here is a func-
tion/state of a cluster node known as maintenance mode. You can set a cluster
member to maintenance mode which essentially removes its resources from the
cluster’s resource pools and from the available capacity in the DRS pool. This
then forces DRS/VirtualCenter to migrate (VMotion) all of the VM's off of the
affected server and keep VM's off of it until it is removed from maintenance
mode.

This is essentially a nice way to migrate VM’s, allow you to work on, upgrade,
bounce etc., the Host while not impacting the VM's in the environment.

High Availability (HA) Services

High Availability services is a service provided within VirtualCenter managed
clusters that provides redundancy for hardware failures within the Cluster. This
service should really be called “Faster Recovery Services,” but I am sure some
marketing department put the smack down on that one. The reason for our
alternate name recommendation is that HA does not really provide true High
Availability. In IT we consider clusters (where a process fails over from one

 139

host to another seamlessly) as true High Availability. VMware’s HA does not do
this. VMware’s HA offers a fast/automated recovery for VM’s running on a
host that has failed or been isolated from the network.

The HA service (as it sits today) is really a software package from Legato called
the Automated Availability Manager or AAM for short. AAM is a pretty inter-
esting product if you get to reading about it, but from a VMware perspective
you see about 1/10th of the full AAM functionality. In the VMware world, Vir-
tualCenter, instead of the AAM console, is used to configure HA services for
HA enabled Clusters. Unlike DRS, VirtualCenter does not initiate VM moves
but instead configures the AAM agents running on the hosts and allows these
agents to manage themselves and look for host failures.

This is probably a good time to explain to you (if you don’t already know) how
HA failures affect Virtual Machines. Some people in the industry assume that
having HA configured during a host failure means that the VM’s are never off-
line and that when a host fails the VMotion functionality is invoked and the
VM’s seamlessly migrate to the other host machines. This is completely untrue.
VMotion requires that the source and target host machines be up and running.
And since HA only takes action AFTER a host failure, it is impossible to VMo-
tion any VM’s to another host. In addition to this, the VM’s are essentially in a
powered off state when HA kicks in and were more than likely powered down
hard as their host has just crashed… Getting a warm fuzzy yet?

Not to worry. It takes about 15 seconds for HA services to realize a failure and
begin restarting VM’s on other hosts in the cluster. The really cool thing about
this is that the recovery time for VM’s (have them back up and running on good
hardware) can generally be counted in minutes. Tests we ran in the early 3.0
days show 20+ VM’s restarting from a failed host in less than 5 minutes. Try
that on a physical piece of hardware with a bad motherboard.

HA Key Architecture Notables

So let’s review some of the key attributes of HA services:

• Clusters using HA can contain up to 16 nodes.

 140

• HA configurations allow you to specify the number of host failures
for your Cluster (1-4).

• HA offers what it calls admission controls to protect against over
utilization.

• HA has isolation detection to allow a host to determine when it has
lost network connectivity.

• Key files and logs for HA can be found in the
/opt/LGTOaam512/ directory (see, Legato…).

• HA does not need VirtualCenter running to restart VM’s.

• HA is highly dependent on DNS, meaning all host names in the
cluster must be able to be resolved via DNS. (Most HA issues are
really DNS related.)

• HA does not detect (at this point) SAN storage losses or Network
connectivity losses that are not Console NIC’s.

When configuring/designing your HA cluster you have a few key decisions to
make. The first is to determine the number of host failures you feel the system
can absorb. This comes back to your decisions on N+x in your environment.
As an example let’s assume you have enough VM’s to pretty much load up a 10
Host cluster. Your environment requires that you supply N+1 redundancy. So
you build an 11 host cluster to meet the requirement. When configuring HA
services you will be asked to specify the number of Host failures for which you
want to guarantee VM failover. In this example your setting would be 1.

HA allows you to configure a cluster for anywhere from 1 to 4 host failures.
The limitation of resides in a limit built in to provide for only 4 “Primaries” or
Primary Nodes. These nodes in Legato terms are where resources can be
moved. ESX incurs an overhead for each primary added, and the acceptable
overhead (per VMware) falls at a maximum of 4 hosts for this purpose in a 16
node cluster.

While the number of failures allowed is an interesting number, don’t just go and
set it to the highest number yet. The reality is you need to take into account the
day to day load of your environment. Let’s assume you built the cluster we used
in the previous example. You have enough VM load to run 10 hosts at 80%
utilization. You then design and built the cluster with 11 hosts to provide N+1.

 141

Here, your setting would seem to be 1 for the maximum number of failures, but
let’s do some math and see if you can go any higher.

Maximum number of acceptable host failures

While it is easy in the physical world to say “N+1” is required, in the virtual
world it is not a one to one ratio. Your 11 server cluster (using DRS and HA)
will have VM’s running on all hosts to utilize their resources when available. But
if we do some quick math around your 11 host environment built to handle 10
hosts at 80% we find some interesting things:

• We assume that each server has 100 units of capacity (converting
% of utilization to a number).

• 10 servers have 1000 total capacity units available. 80% of this
available capacity is 800 units.

• Your environment (example above) will use 800 units of capacity
with 11 hosts that have a total of 1100 units available.

• 11 hosts splitting up those 800 units results in about 72.7 units each
or 72.7% utilization.

• If one of these 11 servers were to fail, its 72.7 units are then split
amongst 10 hosts (taking us back to 80% util).

• But don’t we still have 200 units available? -more than enough to
take another host failure.

The idea here is to determine if 80% is truly the maximum or, if during a failure,
you can run at 87 or 90 or even 100%+ utilization… Right now our example
environment has enough capacity before each server reaches 100% utilization to
handle at least 2 more server failures.

The trick with determining the acceptable % is first dictating a policy in the en-
vironment for operations during a failure (IE: is it ok to run at 100% or close to
it or do you have to stop at 80%, 90% whatever?). Once you do that, you can
do the math yourself, determine the bottleneck in the farm as it grows (generally
memory but sometimes proc), and then set the maximum number of failures.

 142

Why is this maximum number of failures important? Well, not just because it
could save your job, but because of a second option in the HA configurations,
Admission Control. Admission Control allows you to dictate what happens
when you reach the number of failures configured in the HA environment.

The first option is “Do not power on virtual machines if they violate availability
constraints.” That is really a big mouthful for “after we hit the limit number of
configured failure, and another host fails, don’t restart the next failures VM’s.”
This setting essentially will force the system to obey your design decision (the
acceptable amount of utilization during a failure) and keep from over utilizing
the remaining hosts in the cluster during a massive failure. When this option is
selected it also keeps you from reverting snapshots, migrating VM’s into the
cluster, and reconfiguring any VM’s for more CPU or Memory.

The second option for Admission Control (the default) is to “allow Virtual Ma-
chines to be powered on even if they violate availability constraints”. Basically
ignoring your setting, and continue to start VM’s even if your farm has sus-
tained the number of expected failures or more.

Detection of a failure

HA is a pretty cool animal once you think about it. The VirtualCenter server
allows you to configure your settings, and it takes off from there monitoring all
the hosts and looking for failures. But how does it work? The bottom end of
HA is an agent that runs on each host in this cluster. This agent stores informa-
tion (in memory) about the nodes in the cluster and the controller in the cluster.
The first node in the cluster acts as the controller. This controller interprets HA
rules, can initiate failover actions, and has redundancy provided for its opera-
tions by other hosts in the cluster. This controller has a redundant setup in
which another node will take over for the controller in the event of a controller
failure (one of the reasons for storing HA info on each node in the cluster).

Failures of a node in the cluster are determined by a heartbeat that utilizes the
Console network interface. It is HIGHLY advised that you provide redundant
NICs for the console to limit failovers in the event of a single Console NIC
failure. The heartbeat for HA is monitored by all hosts. Each host monitors the
other hosts’ heartbeats and in the event of a lost heartbeat a failure event will be
triggered. The heartbeat threshold for failures is configured for 15 seconds.

 143

Meaning a loss of the heartbeat will not be considered a “failure” for the first 15
seconds. This allows for a minor network disruption or a loss of a heartbeat
packet without kicking off recovery actions.

Once a failure is detected VM’s are restarted on the Hosts with the most avail-
able capacity. Load may not be evenly distributed initially, but the VM’s will
restart and DRS at that point can begin to load level the environment. It is at
this point that some people notice that HA is “not working.” In one environ-
ment they successfully configured HA, and then had a project that moved their
DNS servers to new IP addresses. The ESX hosts themselves were never recon-
figured, and during a failure, no VM’s were restarted… I cannot state enough
times how important it is to ensure your ESX servers have proper DNS settings
and are able to resolve the names of all the other hosts in the cluster.

DNS, DNS, DNS

Did I emphasize it enough? Have proper DNS configurations? If not, here is
another piece of information. Prior to ESX 3.01 and VC 2.1 (thankfully this
now fixed) the DNS names for ESX hosts using HA have a limit of 29 charac-
ters. If the FQDN for your host is not 29 characters or less you will have prob-
lems with HA. As an example, this FQDN works just fine
“esx1.ronoglesby.com” -19 characters. While this one:
”prodesx12.internal.ronoglesby.com” -33 characters, does not. Beware; this has
bitten more than one ESX admin. Hopefully you are not running this older ver-
sion of ESX, but one never knows...

Node isolation

One interesting thing that comes from using a heartbeat for this process is that
node isolation can cause some big issues. Imagine if someone (inadvertently of
course) disconnected all the nics or even just the console nics on one of your
ESX hosts. The cluster node at this point stops receiving heartbeats from the
other nodes. When this happens, the node first needs to determine if it has been
isolated. It does this by pinging the console NIC’s default gateway. If no re-
sponse comes back after 12 seconds it determines it has been isolated and can
take action at that point to shut down VM’s (this is configurable and discussed
next).

 144

Specific Virtual Machine Settings

When VM’s are added to the cluster there are some default settings and behav-
iors you should understand. The first is that within the HA cluster you can con-
figure VM Restart Priorities and their Isolation Response. Let’s look at restart
priorities first.

Restart Priority

Restart priorities are set for each VM (default is Medium) and are a relative
starting priority for VM’s after a failure. VM’s with higher starting priorities
(maybe more critical VM’s) are started before medium, then medium priority
VM’s are started, and so on. Setting these all too high does nothing other than
give equal weight to the VM’s for restarts, so use judiciously.

Restart priorities are really important when you have configured the admission
control to allow for more than your planned amount of failures. Assuming you
have only planned for 1 or 2 failures and set the configuration accordingly, then
you have 3 hosts fail, the restart priority will ensure that the more important
VM’s are started before you potentially run out of resources.

Isolation Response

Isolation Response is a setting that dictates what to do with the Virtual Machine
when a node detects it has been isolated from the network. The default for this
type of event is to power off the virtual machine. The reason behind this default
is fairly well conceived. HA recovery is based on the assumption that the host
has failed and the VM’s need to be started up again. In the case of a node isola-
tion, the VM’s may still be running, and the host will still have a lock on the files
for the VM’s. By initiating a power off of the VM, the lock will be released, and
the HA mechanisms can kick in and restart the VM on another host.

One interesting thing about this is to understand the timing involved and the
effect on the VM. If a node has been isolated for 12 seconds it declares itself
isolated then begins to follow the isolation responses for the VM’s. Power Off
responses are just that, like hitting the power button on a server and not doing a
clean shutdown. At 15 seconds, the other hosts begin their restart steps on the
VM’s that just powered down. Now, not all applications behave well after a

 145

hard power down, and therefore, they have allowed for another option “Leave
power on.”

‘Leave power on’ leaves the VM running on the isolated host. Other hosts try-
ing to restart this VM will not be able to but it may be isolated from the net-
work (or not) and basically just sits on this host hoping everything is ok. Of
course the VM with this setting may also have lost its disk connectivity (if using
iSCSI over the console nic) and could be dead in the water anyway. Personally, I
don’t see much of a use for this unless the data inside the VM is extremely sus-
ceptible to corruption during a hard power off.

Conclusion

As you can see there are a number of small decisions that need to be made to
go into your cluster design. It is imperative that you design your clusters cor-
rectly, unlike the logical groupings in VirtualCenter, a cluster is a physical object
that requires physical connectivity to the network and storage systems. So deci-
sions about the cluster are more important (and not as easily changed) than the
logical Virtual Machine groups in VirtualCenter. Take your time and think out
your cluster design, because after hardware selection it is the most important
design aspect you will make.

	Cover
	B1_CH4

